Борис Колесников - Центробежные насосы, самоочищающиеся фильтры
- Название:Центробежные насосы, самоочищающиеся фильтры
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:9785005022387
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Борис Колесников - Центробежные насосы, самоочищающиеся фильтры краткое содержание
Центробежные насосы, самоочищающиеся фильтры - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Длительность испытаний была установлена в 4÷10 раз меньше длительности инкубационного периода (помутнение поверхности) при кавитационном износе, что исключало появление каверн.
При испытаниях на совместный кавитационно-гидроабразивном износ струя воды содержала 0,5% абразивных частиц. Длительность этих испытаний соответствовала продолжительности испытаний на кавитационный износ.
При совместном действии кавитации и абразивных частиц износ поверхности металла становится более равномерным, так как на ней отсутствуют глубокие каверны, возникающие при воздействии только кавитации. [18]
На рис. 1.17 приведена диаграмма относительной износостойкости полимерных материалов при кавитационном и гидроабразивном износах, построенная по результатам испытаний, выполненных в Институте горной механики и техничесой кибернетики им. Фёдорова. Испытания на гидроабразивный износ проводились на роторной установке центробежного типа, в струе свободных абразивов, а на кавитационный износ – на ультразвуковой специальной установке для испытания материалов шахтных насосов на кавитационную стойкость.
В качестве эталонного образца при испытаниях был принят чугун СЧ21—40.

Рис. 1.17. Относительная износостойкость материалов из пластмасс
Результаты испытаний выявили высокую износостойкость полимерных материалов, относящихся к группе термопластических пластмасс, что позволяет изготавливать детали гидромашин литьём под давлением. [22]
На рис. 1.18 приведена диаграмма относительной износостойкости резин. Испытания на гидроабразивный износ проводились на струеударной установке в струе воды содержащей 20% абразива, состоящего из речного песка крупностью 0,5÷2 мм (78%) и 2÷7 мм (22%).
В качестве эталона использовались образцы из серого чугуна СЧ21—40 и стали Ст.3. Результаты испытаний показали высокую износостойкость резин, которая зависит от содержания в ней каучуков СКИ-3 и НК. [20]

Рис. 1.18. Относительная износостойкость резин при гидроабразивном износе
Для обеспечения сопоставимости показателей относительной износостойкости всех испытанных образцов в лабораторных условиях материалов, (рис.1.15—1.18), была построена обобщённая диаграмма относительной износостойкости материалов и наплавок при гидроабразивном износе, представленная на рис. 1.19. При построении указанной обобщённой диаграммы за эталон износостойкости был принят серый чугун СЧ 21—40. [4]

Рис. 1.19. Обобщённая диаграмма относительной износостойкости материалов и наплавок при гидроабразивном износе
На рис. 1.20 и 1.21 изображены диаграммы относительной износостойкости некоторых металлов при кавитационном износе, построенные по результатам натурных испытаний [20]. Как видно из сопоставления этих диаграмм имеются существенные различия в оценке кавитационной стойкости одних и тех же материалов: например, например, на рис. 1.20, кавитационная стойкость стали 1Х18Н9Т примерно в 30 раз превышает кавитационную стойкость стали 30Л, а на рис. 1.21. тот же показатель равен 3,5. Эти существенные различия кавитационной стойкости одних и тех же материалов могут быть обусловлены, по-видимому, особенностями режимов работы наблюдаемых гидротурбин и химико-минералогическим составом проходящей через них воды.

Рис. 1.20. Относительная износостойкость сталей и чугуна при кавитационном износе

Рис. 1.21. Относительная износостойкость легированных и конструкционной сталей при кавитационном износе
Кроме износостойких высоколегированных сталей с содержанием хрома 13÷14%, указанных на рис. 1.20 и 1.21, высокую износостойкость при кавитационном и гидроабразивном износах в эксплуатационных условиях показали нержавеющие стали 0Х12НДЛ и 0Х18Н3Г3Д2Л, а также сталь 30Х10Г10. [20]
В натурных условиях была также исследована износостойкость некоторых эпоксидных и наиритовых покрытий [22] и [23], которые наносились на лопасти рабочего колеса радиально-осевой и камеру рабочего колеса поворотно-лопастной гидротурбин. На всех исследуемых объектах, даже при слабой интенсивности кавитационных явлений, наблюдался обрыв и разрушение защитных покрытий, вследствие чего полимерные защитные покрытия не нашли практического применения при изготовлении и ремонте гидротурбин.
На основании проведенного выше сопоставительного анализа результатов исследования износостойкости материалов, предназначенных для изготовления, защиты и восстановления рабочих поверхностей деталей лопастных гидромашин можно установить, что самую низкую износостойкость имеет серый чугун.Наибольшей износостойкостью обладают хромистые наплавки, нержавеющие стали и некоторые сорта резин.
Применять серый чугун для изготовления рабочих колёс центробежных насосов предназначенных для машинного орошения поливной водой содержащей твёрдые абразивные частицы – это всё равно, что бросать деньги на ветер!
С целью существенного повышения среднеэксплуатационного КПД центробежных насосов двустороннего входа, снижения материалоёмкости и увеличения средней наработки на отказ, а также для обеспечения контролепригодности (согласно ГОСТ 26656—85) проточной части в процессе изготовления, ниже рассматриваются варианты замены литых рабочих колёс из серого чугуна на стальные сварной конструкции, и другие технические решения…
6. ТЕХНИЧЕСКИЕ РЕШЕНИЯ, ПОВЫШАЮЩИЕ ИЗНОСОСТОЙКОСТЬ И ЭНЕРГОЭФФЕКТИВНОСТЬ ЦЕНТРОБЕЖНЫХ НАСОСОВ
Характерный износ литых чугунных рабочих колёс центробежных насосов двустороннего входа показан выше (см рис. 1.7, 1.8 и 1.11). Как следует из рассмотрения диаграмм относительной износостойкости материалов (см. рис. 1.19—1.21), существенное повышение износостойкости рабочие колёс насосов может быть достигнуто путём применения стали вместо серого чугуна.
Известно, что в гидротурбостроении до середины 60-х годов прошлого века формообразование рабочих колёс радиально-осевых гидротурбин осуществлялось традиционным методом литья в землю. Однако, при проектировании и изготовлении на ЛМЗ (Ленинградский Металлический завод) крупнейших для того времени радиально-осевых гидротурбин Братской ГЭС было установлено, что габаритные размеры и масса рабочих колёс выходят за пределы
Читать дальшеИнтервал:
Закладка: