Александр Хренников - Техническая диагностика и аварийность электрооборудования

Тут можно читать онлайн Александр Хренников - Техническая диагностика и аварийность электрооборудования - бесплатно ознакомительный отрывок. Жанр: sci_tech, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Техническая диагностика и аварийность электрооборудования
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    2021
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Александр Хренников - Техническая диагностика и аварийность электрооборудования краткое содержание

Техническая диагностика и аварийность электрооборудования - описание и краткое содержание, автор Александр Хренников, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Представлен анализ методов диагностики состояния электрооборудования для выявления дефектов и повреждений в процессе эксплуатации. Эффективность применения методов диагностики сопровождается примерами обнаружения дефектов и повреждений конкретного оборудования: силовых трансформаторов, реакторов, трансформаторов тока и напряжения, разъединителей, турбогенераторов, ОПН и т.д. Приведены примеры повреждений и расследования технологических нарушений. Рассмотрены вопросы электродинамических испытаний силовых трансформаторов на стойкость к токам КЗ, которые служат инструментом для повышения надежности их конструкции. Предназначено для руководителей и специалистов технических служб предприятий электрических и распределительных сетей, станций, подразделений технической инспекции (ТИ) и служб охраны труда и надежности филиалов МЭС ПАО «ФСК ЕЭС» и ПАО «Россети», слушателей курсов повышения квалификации, а также для аспирантов, магистрантов и студентов электроэнергетических специальностей.

Техническая диагностика и аварийность электрооборудования - читать онлайн бесплатно ознакомительный отрывок

Техническая диагностика и аварийность электрооборудования - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Александр Хренников
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Рис 13 Термограмма 30032000 г генератора 6 ГТ То ТЭЦ вид со стороны - фото 3

Рис. 1.3. Термограмма 30.03.2000 г. генератора 6 ГТ То ТЭЦ вид со стороны возбудителя в районе 1-го часа (после 1-й перепайки) T = 7,6 град.С ( Rmax =5,07% между ветвями А1 и А2 фазы А).

Рис 14 Термограмма 30032000 г генератора 6 ГТ То ТЭЦ вид со стороны - фото 4

Рис. 1.4. Термограмма 30.03.2000 г. генератора 6 ГТ То ТЭЦ вид со стороны турбины в районе 10-ти часов (после 1-й перепайки) T = 5 град.С ( Rmax =5,07% между ветвями А1 и А2 фазы А).

Турбогенератор ТГ-4 ТЭЦ Волжского Автозавода типа ТВФ-120-2 (год выпуска 1970г.) отключился от сети действием поперечной дифференциальной защиты генератора. Причиной срабатывания защиты явилось нарушение пайки соединительной головки ветви С2 фазы С обмотки статора (обрыв ветви). Предыдущее измерение сопротивления постоянному току обмоток статора показало, что максимальное отличие Rmax между ветвями составляет 3,49 % . Максимальное отклонение от заводских данных составляло 2,2 % на ветви С2.

После перепайки обмотки статора было проведено тепловизионное обследование состояния качества паек головок стержней обмотки статора. Результаты измерений указали на повышенный нагрев мест паек в районе на ветви С2 в точках с T в диапазоне от 3,6 до 3,9 град.С. После перепайки максимальное отличие Rmax между ветвями составило 3,1 % , от заводских данных – 1,8% на ветви С1, что соответствует допустимым нормам по ОНИЭ (рис. 1.5, 1.6) [1, 2].

Рис 15 16 Термограммы 3032000 г генератора ТГ4 ТЭЦ ВАЗа лобовая часть - фото 5

Рис 15 16 Термограммы 3032000 г генератора ТГ4 ТЭЦ ВАЗа лобовая часть - фото 6

Рис. 1.5, 1.6. Термограммы 3.03.2000 г. генератора ТГ-4 ТЭЦ ВАЗа лобовая часть со стороны возбудителя T = 3,6-3,9 град.С ( Rmax = 3,1% между ветвями).

По результатам тепловизионного обследования ТГ-6 ТоТЭЦ, ТГ-4 ТЭЦ ВАЗ и ТГ2 Сызранской ТЭЦ была построена зависимость максимального отличия по сопротивлению постоянному току обмоток статора Rmax (между ветвями в %) от величины избыточной температуры T . Выделена также пороговая граница в 5 % для отклонения Rmax по ОНИЭ. Рассмотрение этой зависимости Rmax от T позволило сделать вывод о величине порогового значения T = 4-5 град.С, при превышении которого возможно наличие дефекта в пайке соединительных головок стержней обмотки статора турбогенераторов (ТГ) в процессе эксплуатации. Пороговый критерий T = 4-5 град.С не является окончательным и будет уточняться [5, 8, 12].

Турбогенератор ТГ2-25-2 Сызранской ТЭЦ (год выпуска 1956) обследовался во время капитального ремонта при помощи тепловизионного контроля при открытых лобовых частях обмотки статора с выведенным ротором и предварительным нагревом от резервного возбудителя постоянным током величиной порядка 600 Ампер. В ходе капитального ремонта проводилась полная перемотка обмотки статора турбогенератора, перепайка дефектных соединительных головок стержней проводилась с использованием циркониевого припоя марки ПМФОЦр 6-4-0,03.

При первичном тепловизионном обследовании на термограмме со стороны возбудителя обнаружено превышение температуры дефектных головок стержней (точки №1, №2, №3, №4, №5, №6, №7, №10) над температурой соседних “холодных” точек T= от 3,1°С до 6,2°С при разнице величины омического сопротивления Rmax=15% между фазами, что значительно превышает норму, указанную в ОНИЭ [1, 2]. После серии последовательных перепаек дефектных головок стержней обмотки статора турбогенератора разница величин омического сопротивления Rомич. между фазами снизилась вначале с Rmax=15% до 7,6%, а затем до 4,2% (рис. 1.7) [1, 2].

Рис 17 Термограмма турбогенератора типа ТГ2252 Сызранской ТЭЦ год выпуска - фото 7

Рис. 1.7. Термограмма турбогенератора типа ТГ2-25-2 Сызранской ТЭЦ, год выпуска 1956, вид со стороны возбудителя, дефектные пайки головок стержней- точки №1, №2, №3, №4, №5, №6, №7, №10 ( T от 3,1°С до 6,2°С, R омич.= 15% ).

Тепловизионное обследование после очередной перепайки показало, что на термограмме, вид со стороны возбудителя, количество дефектных паек головок стержней уменьшилось с 8 до 2-х – точки №1, №5 и T составило от 3,3°С до 5,5°С при Rомич.= 3,2%. Это демонстрирует эффективность применения тепловизионного контроля для контроля качества пайки соединительных головок стержней статорных обмоток турбогенераторов в качества инструмента последовательной оценки качества паек [5-6, 8, 12, 20-22] (рис. 1.8).

Рис 18 Термограмма 291004г турбогенератора типа ТГ2252 Сызранской ТЭЦ - фото 8

Рис. 1.8. Термограмма 29.10.04г. турбогенератора типа ТГ2-25-2 Сызранской ТЭЦ, год выпуска 1956, вид со стороны возбудителя, дефектные пайки головок стержней- точки №1, №5 ( T от 3,3°С до 5,5°С, R омич.= 3,2% ).

1.2. Инфракрасная диагностика теплового состояния болтовых соединений и дефектов разъединителей

Тепловидение позволяет выявлять аварийные дефекты ЭО подстанций с сильными нагревами и значительными перепадами температур по сравнению с температурой окружающей среды (максимальное в данном разделе T=116°С). Кроме аварийных, в ходе тепловизионного обследования обнаруживаются нагревы болтовых соединений шинных и линейных разъединителей, которые могут устраняться по мере возможности отключений.

На рис 1.9 представлена термограмма опорного изолятора разъединителя 110 кВ подстанции «Новоспасская-1». Предположительная причина нагрева – увлажнение внутренней части стержневого изолятора из-за микропористости фарфора, увеличение тока утечки из-за повышенного загрязнения внешней поверхности (T=1,4°С).

Рис 19 Опорный изолятор разъединителя ШР110кВ подстанции Новоспасская1 в - фото 9

Рис. 1.9. Опорный изолятор разъединителя ШР-110кВ подстанции Новоспасская-1» в сторону ЛР. Фаза «А». Предположительно увлажнение внутренней части стержневого изолятора из-за микропористости фарфора, увеличение тока утечки из-за повышенного загрязнения внешней поверхности ( T =1,4°С).

На рис. 1.10 – нагрев болтового соединения аппаратного зажима разъединителя 220 кВ в сторону линии «Просвет-2» подстанция «Томыловская» (губки ножа разъединителя, фаза «В» (T=48°С)).

Рис 110 ЛР220кВ линии Просвет2 подстанция Томыловская Нагрев - фото 10

Рис. 1.10. ЛР-220кВ линии «Просвет-2» подстанция «Томыловская». Нагрев болтового соединения аппаратного зажима разъединителя в сторону ЛЭП. Губки ножа разъединителя, фаза «В» (T=48°С).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Хренников читать все книги автора по порядку

Александр Хренников - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Техническая диагностика и аварийность электрооборудования отзывы


Отзывы читателей о книге Техническая диагностика и аварийность электрооборудования, автор: Александр Хренников. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x