Александр Хренников - Техническая диагностика и аварийность электрооборудования
- Название:Техническая диагностика и аварийность электрооборудования
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2021
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Хренников - Техническая диагностика и аварийность электрооборудования краткое содержание
Техническая диагностика и аварийность электрооборудования - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
На рис. 1.11 изображен нагрев болтового соединения гибкой связи шинного разъединителя 110 кВ в сторону масляного выключателя подстанции «Чапаевская» (фаза «С» (T=116°С)), аварийный дефект, нуждающийся в немедленном устранении [5, 8,12].
Рис. 1.11. ШР-1-110кВ линии «Гражданская» подстанции «Чапаевская». Нагрев болтового соединения гибкой связи в сторону МВ, фаза «С» ( T=116°С).
1.3. Инфракрасная диагностика ОПН
Тепловидение позволяет выявлять дефекты ОПН подстанций на самой ранней стадии развития, приблизительно за 8-12 месяцев до повреждения оборудования.
На рис. 1.12 представлена термограмма ОПН -330 кВ и на рис.1.13 – ОПН -110 кВ, оба установленные на ПС 330 кВ. В обоих случаях сопротивления изоляции ОПН составило менее 300 Ом. Причина – увлажнение и попадание влаги внутрь ОПН, что привело к перегреву по сравнению с соседними фазами (T= 1,2°С и T= 0,5°С соответственно) и, если бы не своевременно проведенное тепловизионное обследование, могло бы стать причиной взрыва ОПН.
Рис. 1.12. Уменьшение сопротивления изоляции ОПН-330 до 300 Ом, увлажнение и попадание влаги внутрь ОПН, перегрев T = 1,2°С.
Рис. 1.13. Уменьшение сопротивления изоляции ОПН-110 до 300 Ом, увлажнение и попадание влаги внутрь ОПН, перегрев T= 0,5°С.
Таким образом, рассмотрены примеры обнаружения дефектов ОПН: уменьшение сопротивления изоляции ОПН-330, увлажнение и попадание влаги внутрь ОПН [5, 8, 10].
1.4. Инфракрасная диагностика теплового состояния высоковольтного маслонаполненного оборудования
Дефекты болтовых соединений разъединителей не единственные обнаруживаемые тепловизорами. Возможно также выявление локальных нагревов на стенках бака высоковольтного маслонаполненного ЭО, связанных с дефектами обмоток встроенных ТТ или плохими контактами внутри масляного выключателя, которые скрыты толщей масла и трудно поддаются интерпретации. На рис. 1.14 виден нагрев фазы «А» встроенного трансформатора тока 110кВ (T=5,1°С) подстанция 110/35/6 кВ. Предположительно возможны две причины: раскорачивание вторичных зажимов ТТ или витковое замыкание в обмотке ТТ. [5, 8-12, 21, 22].
Рис. 1.14. Подстанция 110/35/6 кВ, трансформатор С1Т. Нагрев фазы «А» встроенного трансформатора тока 110кВ (T=5,1°С). Предположительно возможны две причины: 1) раскорачивание вторичных зажимов ТТ; 2) витковое замыкание в обмотке ТТ.
На рис. 1.15 изображен локальный нагрев на стенке бака масляного выключателя ВМ-35кВ «Т1Т» типа МКП-35 подстанции 35/10 кВ, фаза «А» (T= 3,7°С), который может быть связан с плохим контактом в гибкой связи к токоведущему стержню или в контактной группе (розетка дугогасящего устройства) [5, 8-12, 21, 22].
Рис. 1.15. Подстанция 35/10кВ ВМ-35кВ «Т1Т» типа МКП-35. Локальный нагрев на стенке бака масляного выключателя, фаза «А». (
T
= 3,7°С). Предположительно возможны две причины: 1) плохой контакт в гибкой связи к токоведущему стержню; 2) плохой контакт в контактной группе (розетка дугогасящего устройства).
На рис. 1.16 изображен силовой трансформатор типа ТДН-40000/110, 1968 года выпуска с дефектным вводом типа БМТ-110/600, 1976 года изготовления (фаза С). Имело место отсутствие масла в верхней части ввода, эта часть холоднее аналогичной части других вводов на термограмме (правый ввод на снимке). Ввод был заменен, после оценки количества оставшегося масла было обнаружено, что не хватило 12 литров. Причиной ухода масла явилось разрушение резиновых уплотнений в нижней части ввода [5, 7-14,22].
Рис. 1.16. Трансформатор типа ТДН-40000/110 с дефектным вводом типа БМТ-110/600, отсутствие масла в верхней части ввода, эта часть намного холоднее аналогичной части других вводов на термограмме ( T =2,5C, правый ввод на снимке).
1.5 Диагностика и повреждаемость измерительных трансформаторов тока, напряжения
1.5.1. Инфракрасная диагностика измерительных трансформаторов тока.
Тепловидение позволяет выявлять дефекты измерительных трансформаторов тока на подстанциях на самой ранней стадии развития, приблизительно за 8-12 месяцев до повреждения оборудования.
На рис. 1.17 представлен ТТ-330 с tgб =1,0% (норма по tgб для ТТ-330 – 1.0 %), ТТ по результатам тепловизионной диагностики демонтирован и заменен.
Рис. 1.17. ТТ-330 с tg б =1,0% (норма по tg б для ТТ-330 – 1.0 %), ТТ-330 демонтирован и заменен.
На рис. 1.18 и рис. 1.19 изображен ТТ 330 кВ в обычном видимом диапазоне и в инфракрасном. Нормы ХАРГ для ТТ-330 на тот момент отсутствовали, можно было опираться только на результаты накопленного опыта. Обычно эти данные сравнивали с ХАРГ трансформаторов с трех фаз присоединения, так как одновременно не бывает 3 плохих изделия. В данном случае при DT =1,0°C соответствовало tgб расч. =1,4% (25.05.98), DT=2,2°C соответствовало tgб расч. = 2,6% (от 02.06.98), измеренный при рабочем напряжении tgб составил tgб =1,2% (26.06.98). По совокупным результатам этих диагностических измерений ТТ 330 кВ демонтирован и заменен.
Рис. 1.18.
Рис. 1.19.
Рис. 1.18, рис. 1.19 – ТТ-330 с DT=2,2°C с tgб расч. = 2,6%, по совокупным результатам диагностических измерений ТТ 330 кВ демонтирован и заменен – в обычном видимом диапазоне и в инфракрасном.
Приведём пример того, к чему приводит игнорирование рекомендаций тепловизионного обследования. При обследовании на подстанции 110 кВ был обнаружен ТТ-110 с перегревом величиной T =0,8C, несмотря на рекомендации обслуживающий персонал и руководство подстанции не приняли никаких мер по выявлению причин перегрева и через 6 месяцев с момента обнаружения дефекта ТТ-110 кВ произошел его взрыв (рис. 1.20) [4-15].
Рис. 1.20. Поврежденный ТТ-110
Читать дальшеИнтервал:
Закладка: