Наталья Бурханова - Теплотехника
- Название:Теплотехника
- Автор:
- Жанр:
- Издательство:Конспекты, шпаргалки, учебники «ЭКСМО»b4455b31-6e46-102c-b0cc-edc40df1930e
- Год:2008
- Город:Москва
- ISBN:978-5-699-26007-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Наталья Бурханова - Теплотехника краткое содержание
Информативные ответы на все вопросы курса «Теплотехника» в соответствии с Государственным образовательным стандартом.
Теплотехника - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
3) объемы воздуха и продуктов горения при нормаль-ныхусловиях (температура 0 °С, давление 101,3 кПа).
Рассмотрим состав жидкого топлива:
С P + Н P + О P + N P + S p+ А р+ W p= 100.
Горючими составляющими являются углерод, водород и сера. При использовании сухого воздуха реакции полного горения составляющих имеют вид:
С + О 2+ kN 2 = CO 2 + kN 2+ Q 1;
2H 2+ O 2+ kN 2 = 2H 2O + kN 2 + Q 2;
S + O 2+ kN 2 = SO 2 + kN 2 +Q 3.
При горении 1 моля углерода и серы расходуется по 1 молю кислорода. При горении 2 молей водорода расходуется также 1 моль кислорода. С каждым молем кислорода в печь вносится k молей азота. Азот переходит в продукты горения. Поэтому, например, при горении 1 моля углерода получаются 1 моль углекислого газа и 3,76 моля азота. При горении углерода по этой реак 6бции выделяется количество теплоты Qt. При горении водорода образуется свой состав продуктов горения и выделяется иное количество теплоты.
На горение 1 моля углерода затрачивается 1 кмоль кислорода объемом 22,4 м 3. Если надо рассчитать расход кислорода на 1 кг углерода, то объем 1 кмоля кислорода делят на молекулярную массу углерода, равную 12. Поэтому на 1 кг углерода расходуется 22,4 / 12 = = 1,867 м 3/кг кислорода. Рассуждая аналогично, получим, что на горение 1 кг водорода затрачивается 22,4 / /(2 О2) = 5,5 м 3кислорода (произведение в знаменателе означает, что в реакции горения принимают участие две молекулы водорода с молекулярной массой 2). На горение 1 кг серы расходуется 22,4 / 32 = 0,7 м 3кислорода.
Отношение действительного расхода воздуха к теоретически необходимому расходу называют коэффициентом расхода воздуха:
α = L a/L 0, или L a= αL 0,
где L a и L 0 – действительный и теоретический расходы воздуха, м 3/кг или м 3/м 3. Коэффициент расхода воздуха зависит от вида топлива, конструкции топливосжигающего устройства (горелки или форсунки) и температуры подогрева воздуха и газа.
7. Контроль коэффициента расхода воздуха
При недостатке воздуха или несовершенстве топли-восжигающих устройств горение может быть неполным.
Наличие в продуктах горения горючих составляющих (оксида углерода, водорода, метана или сажистого углерода) обусловливает химическую неполноту горения или, как чаще говорят, химический недожог топлива. Последний характеризуется потерями теплоты в процентах от низшей теплоты сгорания топлива.
Чем больше коэффициент расхода воздуха, тем полнее протекает процесс горения. Однако увеличение этого коэффициента приводит к повышенному расходу воздуха и значительным потерям теплоты с газами, уходящими из печи. Температура в печи снижается, что приводит к ухудшению теплоотдачи в рабочем пространстве и усиленному окислению металлов. Поэтому в практике эксплуатации печей стремятся к выбору оптимального коэффициента расхода воздуха a.
Контроль a осуществляют двумя методами. По одному из них измеряют расходы топлива и воздуха и с помощью заранее вычисленных таблиц определяют а.Од-нако этот метод не позволяет учесть воздух, попадающий в печь через рабочие окна и неплотности в кладке печей. Поэтому периодически коэффициент расхода воздуха проверяют по составу продуктов сгорания при помощи газоанализаторов. Химическим анализом определяют содержание в продуктах сгорания RO2, CO, Н2, СН4 и О2, а затем с помощью формулы С. Г. Тройба определяют a:
α = 1+ UO 2 изб / ΣRO 2.
Здесь O 2 изб= О 2– 0,5СО – 0,5Н 2– 2СН 4– содержание избыточного кислорода.
ΣRO 2= RO 2+ CO + СН 4+…,%;
U – коэффициент, зависящий от вида топлива.
Для мазута U= 0,74, для природного газа – 0,5.
Рассмотрим примеры.
Задача.
Определить a, если RO 214%, СО 4%, СН 40,5%; Н 21%, О 22%.
O 2 изб= 2 – 0,5(4 + 1) – 2 О 0,5 = -1,5%;
ΣRO 2= 14 + 4 + 0,5 = 18,5%;
a = 1 – 0,5 О 1,5 / 18,5 = 0,96.
8. Использование энергии
Некоторые положения в области тепловой работы печей могут быть получены непосредственно из классической термодинамики обратимых процессов.
Под тепловой работой печи понимается совокупность происходящих в ней тепловых процессов, конечной целью которых является совершение того или иного технологического процесса.
Представим себе печь как сочетание зон технологического процесса ЗТП и генерации тепла ЗГТ, огражденных от окружающей среды кладкой (футеровкой) К. В зоне технологического процесса сосредоточен материал М. Согласно первому закону термодинамики может быть записано следующее уравнение:
Q эη K.И.Э=Q M+ Q k
где Q э – введенная мощность, Вт/кг;
η K.И.Э – коэффициент использования энергии в пределах рабочего пространства печи;
Q M, Q k – соответственно мощность, усвоенная материалом М и кладкой К, Вт/кг.
Все величины в уравнении (1) отнесены к 1 кг массы материала М.
Коэффициент использования энергии η K.И.Э зависит прежде всего от вида энергии. Так, электрическая энергия может полностью превращаться в тепло, усвоенное материалом (полезное) и кладкой, поэтому η K.И.Э = 1. При использовании в печах химической энергии топлива коэффициент использования энергии η K.И.Э всегда меньше единицы. В топливных печах этот коэффициент называют коэффициентом использования тепла η K.И.Т Коэффициент характеризует важнейшее понятие о работоспособности энергии в конкретных условиях. В общем виде значение Ькиэ может быть записано следующим образом:
η K.И.Э = ( Q э – Q´ э)/Q э =1 – Q´ э/Q э,
где Q3 – мощность, которая в виде химического и физического тепла газовой фазы уходит за пределы рабочего пространства печи, Вт/кг.
Величина η K.И.Э определяется, с одной стороны, полнотой сжигания топлива при данном коэффициенте расхода кислорода, т. е. быстротой смешиваний топлива и кислорода, и, значит, совершенством процессов мас-сообмена. С другой стороны, величина η K.И.Э зависит от температуры уходящих из печи газов, т. е. от совершенства процессов теплообмена.
Работоспособность тепла и химической энергии зависит от заданных условий протекания технологического процесса и организации процессов тепло– и массопереноса и поэтому представляет собой величину, значение которой не может быть найдено с помощью термодинамики обратимых процессов, так как связано с кинетикой тепло– и массообмена.
9. Температурный и тепловой режимы
Внутренняя энергия системы слагается из кинетической и потенциальной энергий. Кинетическая энергия– энергия беспорядочного движения атомов и молекул, потенциальная энергия – энергия их взаимного притяжения и отталкивания.
В соответствии с кинетической теорией газов (закон Максвелла-Больцмана) термодинамическое понятие равновесной температуры для идеального газа может быть расшифровано с помощью уравнения:
Читать дальшеИнтервал:
Закладка: