Наталья Бурханова - Теплотехника

Тут можно читать онлайн Наталья Бурханова - Теплотехника - бесплатно ознакомительный отрывок. Жанр: sci_tech, издательство Конспекты, шпаргалки, учебники «ЭКСМО»b4455b31-6e46-102c-b0cc-edc40df1930e, год 2008. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Теплотехника
  • Автор:
  • Жанр:
  • Издательство:
    Конспекты, шпаргалки, учебники «ЭКСМО»b4455b31-6e46-102c-b0cc-edc40df1930e
  • Год:
    2008
  • Город:
    Москва
  • ISBN:
    978-5-699-26007-2
  • Рейтинг:
    4.63/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Наталья Бурханова - Теплотехника краткое содержание

Теплотехника - описание и краткое содержание, автор Наталья Бурханова, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Информативные ответы на все вопросы курса «Теплотехника» в соответствии с Государственным образовательным стандартом.

Теплотехника - читать онлайн бесплатно ознакомительный отрывок

Теплотехника - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Наталья Бурханова
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

3) объемы воздуха и продуктов горения при нормаль-ныхусловиях (температура 0 °С, давление 101,3 кПа).

Рассмотрим состав жидкого топлива:

С P + Н P + О P + N P + S p+ А р+ W p= 100.

Горючими составляющими являются углерод, водород и сера. При использовании сухого воздуха реакции полного горения составляющих имеют вид:

С + О 2+ kN 2 = CO 2 + kN 2+ Q 1;

2H 2+ O 2+ kN 2 = 2H 2O + kN 2 + Q 2;

S + O 2+ kN 2 = SO 2 + kN 2 +Q 3.

При горении 1 моля углерода и серы расходуется по 1 молю кислорода. При горении 2 молей водорода расходуется также 1 моль кислорода. С каждым молем кислорода в печь вносится k молей азота. Азот переходит в продукты горения. Поэтому, например, при горении 1 моля углерода получаются 1 моль углекислого газа и 3,76 моля азота. При горении углерода по этой реак ции выделяется количество теплоты Qt. При горении водорода образуется свой состав продуктов горения и выделяется иное количество теплоты.

На горение 1 моля углерода затрачивается 1 кмоль кислорода объемом 22,4 м 3. Если надо рассчитать расход кислорода на 1 кг углерода, то объем 1 кмоля кислорода делят на молекулярную массу углерода, равную 12. Поэтому на 1 кг углерода расходуется 22,4 / 12 = = 1,867 м 3/кг кислорода. Рассуждая аналогично, получим, что на горение 1 кг водорода затрачивается 22,4 / /(2 О2) = 5,5 м 3кислорода (произведение в знаменателе означает, что в реакции горения принимают участие две молекулы водорода с молекулярной массой 2). На горение 1 кг серы расходуется 22,4 / 32 = 0,7 м 3кислорода.

Отношение действительного расхода воздуха к теоретически необходимому расходу называют коэффициентом расхода воздуха:

α = L a/L 0, или L a= αL 0,

где L a и L 0 – действительный и теоретический расходы воздуха, м 3/кг или м 3/м 3. Коэффициент расхода воздуха зависит от вида топлива, конструкции топливосжигающего устройства (горелки или форсунки) и температуры подогрева воздуха и газа.

7. Контроль коэффициента расхода воздуха

При недостатке воздуха или несовершенстве топли-восжигающих устройств горение может быть неполным.

Наличие в продуктах горения горючих составляющих (оксида углерода, водорода, метана или сажистого углерода) обусловливает химическую неполноту горения или, как чаще говорят, химический недожог топлива. Последний характеризуется потерями теплоты в процентах от низшей теплоты сгорания топлива.

Чем больше коэффициент расхода воздуха, тем полнее протекает процесс горения. Однако увеличение этого коэффициента приводит к повышенному расходу воздуха и значительным потерям теплоты с газами, уходящими из печи. Температура в печи снижается, что приводит к ухудшению теплоотдачи в рабочем пространстве и усиленному окислению металлов. Поэтому в практике эксплуатации печей стремятся к выбору оптимального коэффициента расхода воздуха a.

Контроль a осуществляют двумя методами. По одному из них измеряют расходы топлива и воздуха и с помощью заранее вычисленных таблиц определяют а.Од-нако этот метод не позволяет учесть воздух, попадающий в печь через рабочие окна и неплотности в кладке печей. Поэтому периодически коэффициент расхода воздуха проверяют по составу продуктов сгорания при помощи газоанализаторов. Химическим анализом определяют содержание в продуктах сгорания RO2, CO, Н2, СН4 и О2, а затем с помощью формулы С. Г. Тройба определяют a:

α = 1+ UO 2 изб / ΣRO 2.

Здесь O 2 изб= О 2– 0,5СО – 0,5Н 2– 2СН 4– содержание избыточного кислорода.

ΣRO 2= RO 2+ CO + СН 4+…,%;

U – коэффициент, зависящий от вида топлива.

Для мазута U= 0,74, для природного газа – 0,5.

Рассмотрим примеры.

Задача.

Определить a, если RO 214%, СО 4%, СН 40,5%; Н 21%, О 22%.

O 2 изб= 2 – 0,5(4 + 1) – 2 О 0,5 = -1,5%;

ΣRO 2= 14 + 4 + 0,5 = 18,5%;

a = 1 – 0,5 О 1,5 / 18,5 = 0,96.

8. Использование энергии

Некоторые положения в области тепловой работы печей могут быть получены непосредственно из классической термодинамики обратимых процессов.

Под тепловой работой печи понимается совокупность происходящих в ней тепловых процессов, конечной целью которых является совершение того или иного технологического процесса.

Представим себе печь как сочетание зон технологического процесса ЗТП и генерации тепла ЗГТ, огражденных от окружающей среды кладкой (футеровкой) К. В зоне технологического процесса сосредоточен материал М. Согласно первому закону термодинамики может быть записано следующее уравнение:

Q эη K.И.Э=Q M+ Q k

где Q э – введенная мощность, Вт/кг;

η K.И.Э – коэффициент использования энергии в пределах рабочего пространства печи;

Q M, Q k – соответственно мощность, усвоенная материалом М и кладкой К, Вт/кг.

Все величины в уравнении (1) отнесены к 1 кг массы материала М.

Коэффициент использования энергии η K.И.Э зависит прежде всего от вида энергии. Так, электрическая энергия может полностью превращаться в тепло, усвоенное материалом (полезное) и кладкой, поэтому η K.И.Э = 1. При использовании в печах химической энергии топлива коэффициент использования энергии η K.И.Э всегда меньше единицы. В топливных печах этот коэффициент называют коэффициентом использования тепла η K.И.Т Коэффициент характеризует важнейшее понятие о работоспособности энергии в конкретных условиях. В общем виде значение Ькиэ может быть записано следующим образом:

η K.И.Э = ( Q эQ´ э)/Q э =1 – Q´ э/Q э,

где Q3 – мощность, которая в виде химического и физического тепла газовой фазы уходит за пределы рабочего пространства печи, Вт/кг.

Величина η K.И.Э определяется, с одной стороны, полнотой сжигания топлива при данном коэффициенте расхода кислорода, т. е. быстротой смешиваний топлива и кислорода, и, значит, совершенством процессов мас-сообмена. С другой стороны, величина η K.И.Э зависит от температуры уходящих из печи газов, т. е. от совершенства процессов теплообмена.

Работоспособность тепла и химической энергии зависит от заданных условий протекания технологического процесса и организации процессов тепло– и массопереноса и поэтому представляет собой величину, значение которой не может быть найдено с помощью термодинамики обратимых процессов, так как связано с кинетикой тепло– и массообмена.

9. Температурный и тепловой режимы

Внутренняя энергия системы слагается из кинетической и потенциальной энергий. Кинетическая энергия– энергия беспорядочного движения атомов и молекул, потенциальная энергия – энергия их взаимного притяжения и отталкивания.

В соответствии с кинетической теорией газов (закон Максвелла-Больцмана) термодинамическое понятие равновесной температуры для идеального газа может быть расшифровано с помощью уравнения:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Наталья Бурханова читать все книги автора по порядку

Наталья Бурханова - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Теплотехника отзывы


Отзывы читателей о книге Теплотехника, автор: Наталья Бурханова. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x