В. Лаврентьев - Вождение автомобилей высокой проходимости. В помощь строителям БАМ.
- Название:Вождение автомобилей высокой проходимости. В помощь строителям БАМ.
- Автор:
- Жанр:
- Издательство:Транспорт
- Год:1974
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
В. Лаврентьев - Вождение автомобилей высокой проходимости. В помощь строителям БАМ. краткое содержание
В книге рассмотрены основные элементы конструкции полноприводных автомобилей с точки зрения влияния на их проходимость по профильным препятствиям и слабым грунтам. Процессы, происходящие при взаимодействии элементов ходовой части с грунтом автомобиля высокой проходимости при его движении по бездорожью, преподнесены в книге в упрощенной форме. Освещены вопросы влияния давления воздуха в шинах на сопротивление движению и силу тяги у автомобилей высокой проходимости на различных грунтах. Даны рекомендации по вождению автомобилей высокой проходимости в различных условиях бездорожья. Описаны приемы преодоления различных препятствий автомобилем с обычной схемой шасси и с шасси, имеющими схему расположения колес, отличающуюся от принятой на автомобилях массового производства.
В книге рассмотрены также особенности применения лебедки для самовытаскивания и оказания помощи другим автомобилям. Даны отдельные рекомендации по подготовке автомобилей высокой проходимости к поездке по бездорожью и обслуживанию их после нее.
Книга рассчитана на широкий круг эксплуатационников и, в первую очередь, на водителей автомобилей, работающих в тяжелых дорожных условиях.
Вождение автомобилей высокой проходимости. В помощь строителям БАМ. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Рассмотрим два колеса разных диаметров с шинами низкого давления (рис. 4). Величина внутреннего рабочего давления воздуха в них для твердых дорог при полной нагрузке назначается заводом-изготовителем, исходя из длительно допустимой величины деформации h шины в поперечном сечении, равной 10–12 % от высоты Н профиля. Площадь контакта шины с опорной поверхностью определяется величинами длины L и ширины В площади контакта.
Шины, имеющие большее сечение профиля и больший диаметр, имеют и большую площадь контакта с грунтом. Исследования показали, что для достижения более высокой проходимости целесообразно увеличивать диаметр колеса, так как при этом уменьшается общее сопротивление движению и благоприятно изменяются соотношения между длиной и шириной контакта. Такая форма колеса общепринята для колесных тракторов (рис. 5, а ). Однако применение больших колес на автомобиле вызывает ряд затруднений: грузовую платформу приходится поднимать выше, при этом растет погрузочная высота и высота положения центра тяжести автомобиля. Для поворота больших управляемых колес необходимо много места. Поэтому конструкторы автомобилей охотнее идут на увеличение профиля шины при незначительном увеличении ее диаметра (рис. 5, б ) или на увеличение ширины шины без увеличения ее диаметра. В последнем случае шина получается широкопрофильной (рис. 5, в ). Применение вместо обычных дорожных спаренных шин с внутренним давлением 3–5 кгс/см 2односкатных увеличенного диаметра или профиля, а также широкопрофильных шин несколько улучшает проходимость автомобиля, но этого оказывается недостаточно. Внутреннее давление воздуха в таких шинах, соответствующее длительно допустимой деформации в 12 % от высоты профиля, составляет обычно около 2,0–3,5 кгс/см 2. Удельное давление на грунт у таких шин ниже, чем у обычных, но оно все же велико, а деформация шин недостаточна для коренного улучшения процесса взаимодействия с грунтом и получения возможности движения по большей части слабых грунтов.


Отечественной шинной промышленностью созданы шины для автомобилей высокой проходимости, позволяющие работать на слабых грунтах не при 10–12 % деформации, а при деформации до 35 % от высоты профиля. Эти, так называемые, шины сверхнизкого давления на слабых грунтах работают при внутреннем давлении воздуха в них, равном 0,5 кгс/см 2. От обычных шин они отличаются высокой эластичностью.
Эти шины отличаются малой толщиной боковин (рис. 6), что делает их эластичными и способными работать при больших деформациях. Конструкция протектора этих шин также отличается от обычной. У шин сверхнизкого давления грунтозацепы расчленены на отдельные элементы. Такая конструкция делает эластичной саму беговую дорожку шины. Повышенная мягкость шин обеспечивается повышенным содержанием в них каучука и меньшим числом слоев более прочного материала корда, что позволяет уменьшить толщину стенки.
Повышенная эластичность шины способствует улучшению взаимодействия колеса со слабыми грунтами и не вызывает больших перегревов при качении деформированной шины. Чтобы при понижении внутреннего давления шина не провернулась на ободе, ее борта зажимаются между ребордами разъемного диска и специальным распорным кольцом.
По мере снижения внутреннего давления в шинах площадь их контакта с грунтом увеличивается, а удельное давление снижается. Например, у автомобиля ЗИЛ-157 по замерам на твердом грунте среднее удельное давление составляет: при давлении в шинах р ш = 3,5 кгс/см 2— 2,5, при р ш = 1,5 кгс/см 2— 1,75, при р ш = 0,5 кгс/см 2— 1,1 кгс/см 2. Но по мере увеличения деформации шины возрастает сопротивление качению. У ЗИЛ-157 при буксировке его по твердой дороге сопротивление качению составляет: при р ш = 3,5 кгс/см 2— 160, при р ш = 1,5 кгс/см 2- 250 и при р ш = 0,5 кгс/см 2— 550 кгс. Увеличение буксировочного сопротивления в этом случае связано с увеличением потерь на деформацию шин.
На мягком грунте величина деформации шин на соответствующих давлениях несколько меньше, чем на твердом, но доля потерь на деформацию шин в общем сопротивлении движению на низких давлениях воздуха значительна. Мощность, затрачиваемая на преодоление этих потерь, переходит в тепло, что приводит к повышенному нагреву шин. В связи с этим общая длительность движения с пониженным внутренним давлением в гарантийном пробеге шин и скорость движения ограничиваются специальными указаниями в инструкции по эксплуатации автомобиля.
Несмотря на то, что сопротивление качению деформированной шины выше, чем накаченной, общее уменьшение сопротивления движению по слабому грунту столь значительно, что в большинстве случаев дополнительные потери на деформацию шин полностью перекрываются уменьшением потерь на образование колеи (табл. 1). Как видно из табл. 1, потери на прокладывание колеи (потери в грунте) на луговине уменьшаются более чем в 4 раза (при давлении 0,5 кгс/см 2), на сыром снегу (при давлении 1,5 кгс/см 2) на 13–14 %, на песке (при давлении 0,5 кгс/см 2) более чем в 3 раза.

Уменьшение сопротивления качению при пониженном давлении воздуха в шинах — это только часть эффекта, который получается при работе на слабых грунтах. Иногда этот эффект очень невелик. Например, на рыхлом сыпучем снегу. Однако, несмотря на это, проходимость автомобиля резко возрастает. Более важной частью эффекта при работе автомобиля на деформированных шинах является улучшение сцепных качеств шины и рост тяговой реакции грунта. При качении такой шины она как бы превращается в маленькую гусеницу с длиной опорной ветви, равной длине контакта деформированной шины с грунтом (рис. 7). При этом тяга автомобиля при понижении давления воздуха в шинах существенно увеличивается (табл. 2). Если сравнить величину уменьшения сопротивления движению и величину роста тяги на крюке в результате понижения давления воздуха в шинах (см. табл. 1 и 2), то видно, что тяга возрастает не на величину уменьшения сопротивления движению, а на существенно большую величину. Причем тяга возрастает даже в том случае, когда сопротивление движению на пониженном давлении воздуха в шинах не уменьшается, а возрастает (в нашем примере на сыром снегу).
Читать дальшеИнтервал:
Закладка: