Вадим Грибунин - Цифровая стеганография
- Название:Цифровая стеганография
- Автор:
- Жанр:
- Издательство:Солон-Пресс
- Год:2002
- Город:Москва
- ISBN:5-98003-011-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вадим Грибунин - Цифровая стеганография краткое содержание
Интерес к стеганографии появился в последнее десятилетие и вызван широким распространением мультимедийных технологий. Методы стеганографии позволяют не только скрытно передавать данные, но и решать задачи помехоустойчивой аутентификации, защиты информации от несанкционированного копирования, отслеживания распространения информации по сетям связи, поиска информации в мультимедийных базах данных.
Международные симпозиумы по скрытию данных проводятся с 1996 года, по стеганографии первый симпозиум состоялся в июле 2002 года. Стеганография – быстро и динамично развивающаяся наука, использующая методы и достижения криптографии, цифровой обработки сигналов, теории связи и информации.
На русском языке стеганографии было посвящено только несколько обзорных журнальных статей. Данная книга призвана восполнить существующий пробел. В ней обобщены самые последние результаты исследований зарубежных ученых. В книге рассмотрены как теоретические, так и практические аспекты стеганографии, выполнена классификация стегосистем и методов встраивания, детально исследованы вопросы повышения пропускной способности стегоканала, обеспечения стойкости и незаметности внедрения, приведено более 50 алгоритмов встраивания данных.
Книга предназначена для студентов, аспирантов, научных работников, изучающих вопросы защиты информации, а также для инженеров-проектировщиков средств защиты информации. Также несомненный интерес она вызовет у специалистов в области теории информации и цифровой обработки сигналов.
Цифровая стеганография - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Рис. 3.15. Упрощенная схема аддитивной стегосистемы со сжатием стего
Обозначим мощность встраиваемого сигнала в виде , мощность контейнера —
, а мощность шума, добавляемого при сжатии через
. Предположим, что контейнер и шум сжатия имеют нормальное распределение. Тогда оба источника шума можно объединить в один источник Z с дисперсией
=
+
. В соответствии с теорией связи, пропускная способность канала передачи сообщения М при воздействии независимого от него шума Z равна
. При фиксированных вероятностных характеристиках шума пропускная способность увеличивается максимизацией значения энтропии
выбором соответствующего распределения скрываемого сообщения. Известно [25], что величина
максимальна при нормальном распределении
:
, где
есть дисперсия стего.
Соответственно, энтропия источника Z равна
.
Тогда скрытая пропускной способность рассматриваемого стегоканала равна
. (3.35)
Отметим, что данная оценка величины скрытой ПС справедлива при условии, что распределения скрываемых сообщений, контейнера и шума сжатия описываются нормальным законом. Это условие не выполняется строго для реальных изображений и реальных алгоритмов их сжатия. Поэтому в работе [5] для вычисления величины скрытой ПС мощность изображений приводится к энтропийной мощности гауссовского сигнала, оказывающего на скрываемое сообщение такое же мешающее воздействие, что и реальное изображение.
Рассмотрим гауссовский контейнер, амплитуды отсчетов которого равномерно распределены в диапазоне значений от 0 до 255 с дисперсией . Энтропия равномерно распределенной величины определяется выражением
бит. Отсюда
. Однако, как исследовано в работе [5], для реальных изображений
, так как они обладают некоторой избыточностью.
Так как распределение шума сжатия в практически используемых алгоритмах обработки точно неизвестно, то на наихудший случай предположим, что шум сжатия гауссовский. Пусть при осуществлении вложения скрываемой информации в контейнер допускается искажение исходного изображения до величины пикового отношения сигнал/шум (ПОСШ) порядка 40 дБ. Такое искажение практически незаметно на глаз. Тогда допустимая мощность скрытого сообщения равна . В работе [5] производилась оценка шума, возникающего при сжатии изображений алгоритмом JPEG с показателем качества 50 %. Из результатов экспериментов следует, что
. Тогда легко подсчитать, что величина скрытой пропускной способности составляет C = 0,0022 бит/пиксел, или 140 бит для изображения размером 256 × 256 пикселов. Пиковое отношение сигнал/шум изображения при этом обеспечивается не менее 37 дБ. При сжатии изображений с более высоким коэффициентом сжатия мощность шума сжатия существенно возрастает. При
величина C уменьшается до 0,0019 бит/пиксел, или 124 бита для того же изображения. При этом ПОСШ снижается и составляет не менее 34 дБ, что еще допустимо для большинства изображений. Заметим, что при увеличении шума сжатия задача нарушителя по обнаружению стегоканала существенно усложняется, так как задачу обнаружения скрываемых сообщений приходится решать при большем уровне маскирующего шума. Таким образом, при увеличении шума обработки при сжатии изображений величина скрытой пропускной способности уменьшается достаточно плавно, а защищенность, напротив, существенно повышается. Следовательно, вполне может быть использована обработка изображений по алгоритму JPEG с умеренным коэффициентом сжатия после встраивания в них скрываемых сообщений.
4. ОЦЕНКИ СТОЙКОСТИ СТЕГАНОГРАФИЧЕСКИХ СИСТЕМ И УСЛОВИЯ ИХ ДОСТИЖЕНИЯ
4.1. Понятие стеганографической стойкости
По сравнению с достаточно хорошо исследованными криптографическими системами понятия и оценки безопасности стеганографических систем более сложны и допускают большее число их толкований [1–3]. В частности, это объясняется как недостаточной теоретической и практической проработкой вопросов безопасности стегосистем, так и большим разнообразием задач стеганографической защиты информации. Стегосистемы водяных знаков, в частности, должны выполнять задачу защиты авторских и имущественных прав на электронные сообщения при различных попытках активного нарушителя искажения или стирания встроенной в них аутентифицирующей информации. Формально говоря, системы ЦВЗ должны обеспечить аутентификацию отправителей электронных сообщений. Подобная задача может быть возложена на криптографические системы электронной цифровой подписи (ЭЦП) данных, но в отличие от стегосистем водяных знаков, известные системы ЭЦП не обеспечивают защиту авторства не только цифровых, но и аналоговых сообщений и в условиях, когда активный нарушитель вносит искажения в защищаемое сообщение и аутентифицирующую информацию. Иные требования по безопасности предъявляются к стегосистемам, предназначенным для скрытия факта передачи конфиденциальных сообщений от пассивного нарушителя. Также имеет свои особенности обеспечение имитостойкости стегосистем к вводу в скрытый канал передачи ложной информации [4,5].
Как и для криптографических систем защиты информации безопасность стегосистем описывается и оценивается их стойкостью (стеганографической стойкостью или для краткости стегостойкостью). Под стойкостью различных стегосистем понимается их способность скрывать от квалифицированного нарушителя факт скрытой передачи сообщений, способность противостоять попыткам нарушителя разрушить, исказить, удалить скрытно передаваемые сообщения, а также способность подтвердить или опровергнуть подлинность скрытно передаваемой информации.
Читать дальшеИнтервал:
Закладка: