Вадим Грибунин - Цифровая стеганография
- Название:Цифровая стеганография
- Автор:
- Жанр:
- Издательство:Солон-Пресс
- Год:2002
- Город:Москва
- ISBN:5-98003-011-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вадим Грибунин - Цифровая стеганография краткое содержание
Интерес к стеганографии появился в последнее десятилетие и вызван широким распространением мультимедийных технологий. Методы стеганографии позволяют не только скрытно передавать данные, но и решать задачи помехоустойчивой аутентификации, защиты информации от несанкционированного копирования, отслеживания распространения информации по сетям связи, поиска информации в мультимедийных базах данных.
Международные симпозиумы по скрытию данных проводятся с 1996 года, по стеганографии первый симпозиум состоялся в июле 2002 года. Стеганография – быстро и динамично развивающаяся наука, использующая методы и достижения криптографии, цифровой обработки сигналов, теории связи и информации.
На русском языке стеганографии было посвящено только несколько обзорных журнальных статей. Данная книга призвана восполнить существующий пробел. В ней обобщены самые последние результаты исследований зарубежных ученых. В книге рассмотрены как теоретические, так и практические аспекты стеганографии, выполнена классификация стегосистем и методов встраивания, детально исследованы вопросы повышения пропускной способности стегоканала, обеспечения стойкости и незаметности внедрения, приведено более 50 алгоритмов встраивания данных.
Книга предназначена для студентов, аспирантов, научных работников, изучающих вопросы защиты информации, а также для инженеров-проектировщиков средств защиты информации. Также несомненный интерес она вызовет у специалистов в области теории информации и цифровой обработки сигналов.
Цифровая стеганография - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В итоге средняя мощность среди тестовых изображений ISO и средняя скорость алгоритма CALIC были использованы для вычисления границ скрытой пропускной способности для широкого диапазона значений отношения мощности скрываемого сигнала к мощности контейнерного шумового сигнала. На рис. 3.13 пунктирной линией показана величина пропускной способности С gканала с белым гауссовским шумом. Средняя скорость CALIC по всем изображениям равна 4,9588 бит на пиксел, а средняя мощность сигналов изображения — 2284,7. Сплошная линия на рисунке показывает верхнюю границу скрытой пропускной способности, прерывистая — нижнюю. При уменьшении отношения мощности скрываемого сигнала к мощности контейнерного шумового сигнала нижняя граница скрытой пропускной способности снижается до 0. Реальное значение скрытой пропускной способности стегоканала находится между верхней и нижней границами и отражает то количество скрываемой информации, которое можно внедрить в один пиксел усредненного контейнерного изображения.
Рис. 3.13. Оценки скорости передачи скрываемых сообщений в зависимости от отношения сигнал/шум
Рис. 3.14. Оценки скорости передачи скрываемых сообщений в зависимости от отношения сигнал/шум для низкочастотного изображения «Lena» и высокочастотного изображения «Eiger»
Верхние и нижние границы скрытой ПС в работе [4] были вычислены для двух типовых полутоновых изображений. На левом графике рис. 3.14 показаны верхняя и нижняя границы величины скрытой пропускной способности стеганографического канала для тестового портретного изображения «Lena». В качестве оценки энтропии этого изображения была использована достигнутая алгоритмом CALIC скорость 4,6321 бит на пиксел. Правый график показывает верхнюю и нижнюю границы величины скрытой ПС для тестового пейзажного изображения «Eiger» (скорость CALIC 5,2366 бит на пиксел). На этих же графиках точками указаны достигнутые скорости передачи скрываемого сообщения в предложенной в работе [4] системе скрытия данных в изображении с расширением спектра (SSIS). Отметим, что достигнутые в стегосистеме SSIS скорости передачи скрываемых сообщений лежат между верхней и нижней границами скрытой пропускной способности, вычисленных для использованных контейнерных изображений.
Из рис. 3.13 и рис. 3.14 видно, что величина скрытой ПС приблизительно линейно зависит от отношения сигнал/шум при малых величинах ОСШ. Отношение сигнал/шум может быть использовано в качестве объективной оценки степени необнаруживаемости скрываемого сообщения. Для различных видов скрываемых сообщений допустимая величина ОСШ разная. Пусть в аддитивной стегосистеме речевое сообщение скрытно передается в составе контейнера с гауссовским распределением. Признаки наличия речи не выявляются на слух и с использование инструментальных методов при ОСШ не превышающем -16…-20 дБ [33]. Если прятать речь в изображении, характеристики которого существенно отличаются от статистики гауссовского сигнала, то можно надеяться, что допустимая с точки зрения необнаруживаемости величина ОСШ может быть уменьшена. Это важно с точки зрения увеличения скрытой ПС. Например, при ОСШ равном -18 дБ, согласно описанным границам в низкочастотном изображении «Lena» можно скрыть не менее 0,05…0,95 бит речевой информации на пиксел изображения.
Пусть в аддитивной стегосистеме в изображение-контейнер внедряется скрываемое изображение. Различные изображения характеризуются большим разбросом корреляционных зависимостей между пикселами. Для скрытой передачи низкочастотных изображений, у которых корреляционные зависимости являются значительными (например, к этому классу относится портретное изображение «Lena»), требуемое отношение мощности скрываемого изображения к мощности гауссовского контейнера должно быть не более -20…-25 дБ. Для высокочастотных изображений типа пейзаж, надежное скрытие может быть обеспечено при большем значении ОСШ, порядка -10…-15 дБ. Таким образом, проще прятать изображения с большим количеством мелких деталей в гауссовском контейнере. Заметим, что эти цифры являются ориентировочными и справедливы для контейнеров с нормальным распределением. При скрытии изображения в изображении, допустимая величина ОСШ может быть уменьшена. Таким образом, в зависимости от характера скрываемого и контейнерного изображения в каждом пикселе контейнерного изображения потенциально можно надежно прятать от 0,01 до 1 бита графической информации.
Однако следует учитывать, что приведенные оценки скрытой ПС указывают на потенциальную возможность скрытия такого количества информации в усредненном элементе контейнера, но не гарантируют, что в реальных стегосистемах скорости передачи скрываемой информации будут близки к этим теоретическим оценкам и при этом будет обеспечиваться стойкость к произвольным методам стегоанализа. От излишнего оптимизма предостерегает крах многих предложенных к настоящему времени стегосистем, для которых очень быстро были разработаны эффективные методы стегоанализа. В частности, в следующей главе будет показано, как на основе визуальной и статистических атак уверенно обнаруживаются следы скрываемой информации при ее встраивании в наименее значащие биты элементов изображений и аудиосигналов. Необходимо отметить, что отношение сигнал-шум является характеристикой скрытия не более чем первого порядка при использовании методов стегоанализа, и потому для уверенности в надежном скрытии информации требуется использовать и другие оценки необнаруживаемости.
В работе [5] с позиций теории информации исследована скрытая пропускная способность стегоканала при следующей постановке. При передаче изображений широко используются алгоритмы сжатия типа JPEG, JPEG2000, MPEG, вносящие в изображение некоторую допустимую для получателя погрешность. Пусть есть контейнерное изображение, М — встраиваемое сообщение. После вложения сообщение М в контейнер
сформированное стего подвергается сжатию с погрешностью. Будем полагать, что встраивание сообщения в контейнер, а также сжатие стего описываются отображениями при которых на скрываемое сообщение аддитивно воздействуют шум встраивания и, соответственно, шум сжатия. Это позволяет представить анализируемую стегосистему в виде, показанном на рис. 3.15.
Интервал:
Закладка: