Вадим Грибунин - Цифровая стеганография
- Название:Цифровая стеганография
- Автор:
- Жанр:
- Издательство:Солон-Пресс
- Год:2002
- Город:Москва
- ISBN:5-98003-011-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вадим Грибунин - Цифровая стеганография краткое содержание
Интерес к стеганографии появился в последнее десятилетие и вызван широким распространением мультимедийных технологий. Методы стеганографии позволяют не только скрытно передавать данные, но и решать задачи помехоустойчивой аутентификации, защиты информации от несанкционированного копирования, отслеживания распространения информации по сетям связи, поиска информации в мультимедийных базах данных.
Международные симпозиумы по скрытию данных проводятся с 1996 года, по стеганографии первый симпозиум состоялся в июле 2002 года. Стеганография – быстро и динамично развивающаяся наука, использующая методы и достижения криптографии, цифровой обработки сигналов, теории связи и информации.
На русском языке стеганографии было посвящено только несколько обзорных журнальных статей. Данная книга призвана восполнить существующий пробел. В ней обобщены самые последние результаты исследований зарубежных ученых. В книге рассмотрены как теоретические, так и практические аспекты стеганографии, выполнена классификация стегосистем и методов встраивания, детально исследованы вопросы повышения пропускной способности стегоканала, обеспечения стойкости и незаметности внедрения, приведено более 50 алгоритмов встраивания данных.
Книга предназначена для студентов, аспирантов, научных работников, изучающих вопросы защиты информации, а также для инженеров-проектировщиков средств защиты информации. Также несомненный интерес она вызовет у специалистов в области теории информации и цифровой обработки сигналов.
Цифровая стеганография - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
5.1.2. Принципы сжатия изображений
Под сжатием понимается уменьшение числа бит, требующихся для цифрового представления изображений. В основе сжатия лежат два фундаментальных явления: уменьшение статистической и психовизуальной избыточности. Можно выделить три типа статистической избыточности:
— пространственная, или корреляция между соседними пикселами;
— спектральная, или корреляция между соседними частотными полосами;
— временная, или корреляция между соседними кадрами (для видео).
Велика ли статистическая избыточность в неподвижном изображении? Для ответа на этот вопрос попробуйте сжать картинку каким-либо архиватором — результаты вас разочаруют. Высокие коэффициенты сжатия достижимы лишь с использованием психовизуальной избыточности изображения, то есть пренебрежения его визуально незначимыми частями. И тут уж не обойтись без знания системы человеческого зрения. «Выброшенные» части изображения заменяют нулями (константами), и если их много — применяют кодер длин серий. В реальных алгоритмах сжатия осуществляют обнуление не пикселов изображения, а спектральных коэффициентов. Преимущество такого подхода заключается в том, что близкие к нулю спектральные коэффициенты имеют тенденцию располагаться в заранее предсказуемых областях, что приводит к появлению длинных серий нулей и повышению эффективности кодирования. Большие по величине коэффициенты («значимые») подвергают более или менее точному квантованию и также сжимают кодером длин серий. Последним этапом алгоритма сжатия является применение энтропийного кодера (Хаффмана или арифметического).
Восстановленное после сжатия изображение, естественно, отличается от исходного. При прочих равных условиях, чем больше сжатие, тем больше искажение. Для оценки качества восстановленного изображения можно использовать меру среднеквадратического искажения, определяемую как
, (5.1)
где N — число пикселов в изображении, — значение пикселов исходного и восстановленного изображений. Гораздо чаще применяется модификация этой меры — пиковое отношение сигнал/шум, определяемое как
, (5.2)
где 255 — максимальное значение яркости полутонового изображения (т. е. 8 бит/пиксел). Восстановленное изображение считается приемлемым, если ПОСШ >= 28–30 дБ (в среднем). Перечисленные объективные меры искажения не всегда коррелируют с субъективным восприятием изображений, однако ничего лучшего до сих пор не придумано.
ПОСШ не всегда хорошо согласуется с визуально наблюдаемой ошибкой. Пусть имеется два изображения, которые полностью одинаковы, кроме небольшой области. Хотя визуально разность между этими изображениями хорошо заметна, ПОСШ будет примерно одинаковым. Учет системы человеческого зрения в схеме сжатия является трудной задачей. Было проведено множество исследований, но в силу трудностей с математическим описанием системы зрения человека более подходящей меры найдено не было.
Выше было показано, что в человеческом глазу выполняется операция кратномасштабного представления изображений. Глаз более чувствителен к искажениям в низкочастотной области. Отсюда существует возможность улучшения визуального качества реконструированного изображения путем взвешивания СКО субполос в соответствии с чувствительностью глаза в различных частотных диапазонах.
Процесс внедрения скрываемой информации в изображения в каком-то смысле дуален процессу их сжатия. Встраивание информации зачастую осуществляют в незначащие области, чтобы не изменить визуальное представление изображения. Оптимальный метод сжатия удалит эту информацию. К счастью, современные алгоритмы сжатия оставляют достаточно возможностей для реализации утонченных способов внедрения данных.
Рассмотрим вкратце некоторые алгоритмы сжатия изображений. Далее мы увидим, что при встраивании ЦВЗ в основном используются те же подходы.
Стандарт сжатия JPEG является в настоящее время наиболее распространенным и своеобразным «benchmark`ом» для алгоритмов ЦВЗ (то есть устойчивость системы ЦВЗ к сжатию JPEG проверяется обычно в первую очередь). В соответствии с этим стандартом изображение разбивается первоначально на блоки 8х8 элементов, к каждому из которых применяется дискретное косинусное преобразование (ДКП). Назначением ДКП является осуществление перераспределения энергии: значимые коэффициенты группируются в левом верхнем углу квадрата спектральных коэффициентов, так как соседние пикселы изображения коррелированы. Далее следуют равномерное табличное квантование коэффициентов, кодирование длин серий и кодирование Хаффмана.
В последние годы внимание специалистов в области эффективного кодирования привлечено к сжатию изображений с применением вейвлет-преобразования. В данном направлении ведутся активные исследования и уже получены первые результаты, показывающие эффективность применения вейвлет-преобразования для сжатия изображений. Разработано большое количество алгоритмов сжатия с использованием этого преобразования.
Вейвлет-преобразование, также как и ДКП перераспределяет энергию изображения. Эта компактность энергии ведет к эффективному применению скалярных квантователей. Однако они не учитывают остаточную структуру, сохраняющуюся в вейвлет-коэффициентах, в особенности высокочастотных субполос. Современные алгоритмы сжатия все тем или иным образом используют эту структуру для повышения эффективности сжатия.
Одним из наиболее естественных способов является учет взаимосвязей между коэффициентами из различных субполос. В высокочастотных субполосах имеются обычно большие области с нулевой или малой энергией. Области с высокой энергией повторяют от субполосы к субполосе свои очертания и местоположение. И это неудивительно — ведь они появляются вокруг контуров в исходном изображении — там, где вейвлет-преобразование не может адекватно представить сигнал, что приводит к «утечке» части энергии в ВЧ субполосы. Медленно изменяющиеся, гладкие области исходного изображения хорошо описывают НЧ вейвлет-базисы, что приводит к «упаковке» энергии в малом числе коэффициентов НЧ области. Этот процесс примерно повторяется на всех уровнях декомпозиции, что и приводит к визуальной «похожести» различных субполос.
Интервал:
Закладка: