Александр Прищепенко - Шипение снарядов
- Название:Шипение снарядов
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2012
- Город:Москва
- ISBN:978-5-99036-461-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Прищепенко - Шипение снарядов краткое содержание
«Поражающее» интересует многих, и не только тех, кто знаком с одноименной сурой Корана. На многочисленных (и в большинстве — цветных) иллюстрациях этой книги — выстрелы пушек, пробитая снарядами сталь, разобранные и собранные ядерные заряды, их взрывы во всех средах, электромагнитные боеприпасы. А текст поясняет принципы, положенные в основу функционирования боевых устройств — без сложной математики, на основе простых аналогий. Описаны и подходящие по тематике опыты (некоторые, наиболее безопасные из них, автор рекомендует провести читателю). Книга — для тех, кто получил высшее техническое образование и тех, кто знает физику в пределах школьного курса. Во втором издании исправлены замеченные ошибки, значительно расширен иллюстративный ряд.
Шипение снарядов - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:



Правда стал перехват менее зрелищным: не слепящие ядерные космы в полнеба, а неяркая вспышка (рис. 4.4), потому что не термоядерный заряд уничтожал боевой блок, а развернувшаяся вблизи от цели стальная пружина резала все встреченное на пути.

… И забивали баки тем офтальмологам энтомологи, сооружавшие совсем уж ничтожных нанотехнологических роботов-инсектов (рис. 4.5), чтобы те, подобно неприличным паппараци, нагло высматривали своими миниатюрными камерами сокровенное, не для чужих глаз предназначенное…
…В популярных изданиях принято приводить бросающиеся в глаза сравнения — чтобы оживить изложение, сделать его более запоминающимся. Не без зависти, цитирую: «Современная электроника в состоянии зарегистрировать электромагнитные волны мощностью еще меньшей той, что развивает муха, поднимаясь в течение ста лет на один сантиметр».


Сложно удержаться от восхищения ярким образом, хотя из него следует и некомплиментарный вывод: всякое устройство имеет пределы работоспособности, и если регистрируемая им в нормальном режиме мощность очень и очень мала, то мощность сигнала, который оно «не вынесет» и выйдет из строя, тоже не слишком велика. Образно говоря — достаточно бросить горстку песка, чтобы настроенная крайне патриотически, но ничего не «видящая» дура, весом более тонны, с обиженным ревом пронеслась мимо, оставив, как напоминание о себе, лишь зловоние сгоревшего смесевого топлива. Ну а механической мухе — не песка, а ничтожной песчинки надо, чтобы, забыв о постыдных порнографических экзерсисах, хлопнулась неслышно она на спинку и, посучив конвульсивно крылышками из полиэтилен-терефталата, затихла навсегда…

…Обретение радиочастотным электромагнитным излучением (РЧЭМИ) свойств поражающего фактора произошло как в результате создания мощных его источников, так и эволюции элементной базы электроники: на смену лампам, которые невозможно «сжечь», пришли микросхемы, размеры полупроводниковых элементов в которых непрерывно уменьшаются и в настоящее время составляют доли микрона. Между тем, понятно, что, с уменьшением размеров полупроводниковых элементов, снижается и их стойкость к токовым перегрузкам, так что появление и совершенствование ЭМО противостоит этой тенденции, которая в первую очередь и обеспечивает быстрый рост функциональных возможностей ЭС. полупроводники. Платой за колоссально возросшие функциональные возможности стала повышенная уязвимость электроники к токовым перегрузкам. В результате, при действии по целям, в состав которых входят современные электронные средства, РЧЭМИ значительно превосходит по энергетической эффективности ударную волну и осколки. Например, стойкий функциональный отказ крылатой ракеты происходит при воздействии одного из поражающих факторов со следующими значениями плотности энергии (Дж/м 2):
• осколки весом не менее одного грамма каждый — 100000;
• воздушная ударная волна— 50000;
• РЧЭМИ микросекундной длительности — 1-10.
Повышение степени интеграции, дальнейшая миниатюризация полупроводниковых элементов означают, что такие элементы будут становиться все менее стойкими к токовым перегрузкам. Так что РЧЭМИ — эффективный поражающий фактор, когда речь идет о целях, в состав которых функционально входит электроника: сама угроза его боевого применения встает на пути миниатюризации — основной тенденции развития электронных средств.
Есть у РЧЭМИ и недостатки: с хранением не только излучения, а и электромагнитной энергии других видов дело обстоит неблагополучно. Так, например, в заряженном высоковольтном конденсаторе максимальная плотность электрической энергии не превышает десятых долей джоуля на кубический сантиметр, и хранится она недолго; ваккумуляторе или в ионистере (конденсаторе сверхбольшой емкости) плотность энергии повыше, но ее нельзя извлечь быстро — за миллионные доли секунды. Так что энергию приходится «доставать» из других «хранилищ» и уж затем преобразовывать ее в электромагнитную; при этом не избежать существенных потерь, и потому итоговые эффективности электромагнитного и традиционного оружия отличаются не так разительно, как эффективности отдельно взятых поражающих факторов.
«Хорошие» хранилища энергии существуют: это те же взрывчатые вещества. Но если появление электроники привело к качественному скачку в боевых возможностях оружия, то скачка в характеристиках взрывчатых веществ не произошло: «на арену» вышел лишь октоген, превосходящий гексоген всего-то на несколько процентов по энергосодержанию. Дело в том, что, в соответствии со вторым началом термодинамики, любая реакция с выделением энергии самопроизвольно протекает всегда и ВВ не могут не разлагаться.
Читать дальшеИнтервал:
Закладка: