Карл Гильзин - Воздушно-реактивные двигатели
- Название:Воздушно-реактивные двигатели
- Автор:
- Жанр:
- Издательство:Военное Издательство Министерства Обороны Союза ССР
- Год:1956
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Карл Гильзин - Воздушно-реактивные двигатели краткое содержание
Из введения: ...В книге будет рассказано также о том, какие интересные и сложные физические процессы происходят при работе воздушно-реактивных двигателей и как ученые и инженеры овладевают и управляют этими процессами, вписывая блестящие страницы в историю борьбы за овладение силами природы и покорение их человеком; о том, как устроены различные воздушно-реактивные двигатели, каковы их характеристики и их место в авиации настоящего и будущего; о тех замечательных перспективах, которые открываются перед реактивной авиацией будущего, и о том, как ученые и конструкторы борются сегодня за то, чтобы возможное стало действительным...
Воздушно-реактивные двигатели - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Прямоточные воздушно-реактивные двигатели обладают тем преимуществом по сравнению с пульсирующими, что во время работы они не издают такого сильного шума. Однако для запуска прямоточного двигателя несущий винт вертолета нуждается в предварительной раскрутке при помощи какого-нибудь стартера, тогда как при установке пульсирующего двигателя это не является обязательным.
Прямоточный воздушно-реактивный двигатель имеет большие перспективы применения в беспилотной авиации и в так называемых управляемых снарядах. Это объясняется относительной простотой конструкции, малым весом и дешевизной этих двигателей, что очень важно для оружия одноразового применения. На рис. 71 сверху изображен управляемый по радио беспилотный самолет с дозвуковым прямоточным двигателем, предназначенный для использования в качестве «летающей цели» при тренировке летчиков в воздушной стрельбе. Снизу на том же рисунке показан тяжелый сверхзвуковой управляемый зенитный снаряд для борьбы с самолетами противника. Для взлета этот снаряд снабжается жидкостным ракетным двигателем. Скорость полета снаряда достигает почти 2500 км/час .

Рис. 71. Беспилотные самолеты: вверху — беспилотный «самолет-цель» с дозвуковым прямоточным воздушно-реактивным двигателем; внизу — управляемый зенитный снаряд со сверхзвуковым прямоточным воздушно-реактивным и жидкостным ракетным двигателями
Но наиболее полно возможности прямоточного воздушно-реактивного двигателя могут быть реализованы в авиации сверхзвуковых скоростей. В определенном диапазоне сверхзвуковых скоростей полета никакой другой авиационный двигатель не сможет сравниться с прямоточным воздушно-реактивным двигателем по основным техническим характеристикам, что наглядно иллюстрируется графиками, изображенными на рис. 72. В отношении веса, приходящегося на 1 л. с . мощности, прямоточный двигатель при скоростях полета, в 3—4 раза превосходящих скорость звука, слегка уступает только жидкостному ракетному двигателю. При этих скоростях прямоточный двигатель способен развивать 400—500 л. с. на 1 кг своего веса. Это значит, что двигатель мощностью в 100 000 л. с. будет весить всего 200—250 кг, что недостижимо ни для одного другого двигателя, кроме жидкостного ракетного.

Рис. 72. При сверхзвуковых скоростях полета прямоточные двигатели не имеют конкурентов, что иллюстрируется графиками:
а — график зависимости мощности, развиваемой двигателем на 1 кг его веса, от скорости полета; б — график зависимости расхода топлива двигателем на 1 кг развиваемой им тяги от скорости полета; в — график зависимости относительной дальности полета самолетов с различными двигателями от скорости полета
Но жидкостный ракетный двигатель значительно уступает прямоточному воздушно-реактивному двигателю в отношении экономичности, т. е. по расходу топлива. При подобных скоростях полета прямоточный двигатель расходует всего 2 кг топлива в час на каждый килограмм развиваемой им тяги, тогда как жидкостный ракетный двигатель расходует топлива в 8 раз больше! Это, впрочем, неудивительно, так как топливо для ракетного двигателя — это не только горючее, как в прямоточном, но и окислитель, который тоже должен находиться на борту летательного аппарата. Другие воздушно-реактивные двигатели, использующие атмосферный кислород, как и прямоточный, при скорости полета, в 3—4 раза превышающей скорость звука, также намного уступают ему в отношении экономичности.
Дальность полета, достижимая с помощью того или иного двигателя, зависит как от его веса, так и от количества расходуемого им топлива. Неудивительно, что при указанных выше огромных скоростях полета прямоточный двигатель оказывается в состоянии обеспечить наибольшую относительную дальность.
Однако следует оговориться, что кривые, показанные на рис. 72, построены для того случая, когда каждому значению скорости полета соответствует своя, наивыгоднейшая конструкция прямоточного воздушно-реактивного двигателя. Если допустим, что один и тот же двигатель совершает полет во всем диапазоне скоростей, то при скоростях, отличных от расчетной для данного двигателя, его характеристики будут ухудшаться. Это становится очевидным хотя бы из рассмотрения рис. 73, на котором показано, как изменяются условия работы диффузора сверхзвукового прямоточного двигателя при изменении скорости полета. На расчетном режиме, т. е. при полете с определенной расчетной скоростью, косой скачок на входе в двигатель располагается так, как показано на среднем рисунке. Если скорость полета уменьшается, то угол скачка увеличивается, вследствие чего в двигатель начинает поступать меньше воздуха, часть его будет как бы «выплескиваться». Конечно, тяга двигателя из-за этого, а также и из-за увеличения потерь при сжатии уменьшится. Если же скорость полета увеличится по сравнению с расчетной, то угол скачка уменьшится и он переместится внутрь диффузора. Такой режим также приведет к уменьшению тяги из-за увеличения потерь при сжатии воздуха.

Рис. 73. При изменении скорости полета условия работы сверхзвукового диффузора изменяются. В центре — расположение скачка при расчетной скорости полета; слева — расположение скачка при скорости полета меньше расчетной; справа — расположение скачка при скорости полета больше расчетной
Для того чтобы характеристики прямоточного двигателя были наилучшими при всех возможных скоростях полета, необходимо осуществить регулирование двигателя, т. е. изменение его геометрических параметров в зависимости от скорости полета. Задача такого регулирования представляет собой одну из сложнейших проблем создания совершенного прямоточного воздушно-реактивного двигателя, так как скорость полета самолета с этим двигателем может меняться от сотен до тысяч километров в час, высота — от уровня моря до 20—30 км , мощность двигателя — от сотен до сотен тысяч лошадиных сил, расход топлива — от десятых долей килограмма до десятков килограммов в секунду, давление в двигателе — от десятых долей атмосферы до десятков атмосфер и т. д. Трудности регулирования очевидны, но они преодолимы, и нет сомнения в том, что и эта проблема будет решена.
Характеристики прямоточных воздушно-реактивных двигателей позволяют с уверенностью предвидеть разностороннее их применение уже в недалеком будущем в сверхзвуковой авиации и реактивной артиллерии. Уже имеются летательные аппараты с прямоточным воздушно-реактивным двигателем, развивающим скорость полета около 2500 км/час.
Читать дальшеИнтервал:
Закладка: