Владо Дамьяновски - CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии
- Название:CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии
- Автор:
- Жанр:
- Издательство:ООО «Ай-Эс-Эс Пресс»
- Год:2006
- Город:Москва
- ISBN:5-87049-260-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владо Дамьяновски - CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии краткое содержание
Это 2-е издание популярной за рубежом и в России книги Владо Дамьяновски — всемирно известного эксперта в области видеонаблюдения и охранного телевидения, в которой обобщено около десяти лет теоретических исследований и более двадцати лет практического опыта. Книга ориентирована на довольно широкую читательскую аудиторию — менеджеров по системам безопасности, инсталляторов и интеграторов оборудования, консультантов, разработчиков и конечных пользователей. Кроме того, книга будет по достоинству оценена теми, кто собирается заняться системами видеонаблюдения и охранным телевидением.
CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
На экране монитора наводки (нежелательные) электросети имеют вид нескольких жирных горизонтальных полос, медленно сползающих вверх или вниз. Частота сползания определяется разницей между частотой полей видеосигнала и промышленной частотой и может составлять от 0 до 1 Гц. В результате на экране появляются неподвижные или очень медленно перемещающиеся полосы.
Другие частоты проявляются в виде различных — в зависимости от источника — картин распределения шумов. Главное правило заключается в том, что, чем выше частота наведенного нежелательного сигнала, тем тоньше детали шумовой картины. Повторно-кратковременные наводки, вроде молнии или проезжающего автомобиля, будут давать нерегулярную картину шумов.
Характеристический импеданс (полное сопротивление)
Короткие провода и кабели, используемые в обычных электронных блоках оборудования, имеют незначительные сопротивление, индуктивность и емкость и не влияют на распределение сигнала. Однако если сигнал должен быть передан на довольно большое расстояние, в сложную картину передачи информации включается множество разных факторов. Особенно подвержены влиянию высокочастотные сигналы.
Тогда сопротивление, индуктивность и емкость начинают играть значительную роль и ощутимо влияют на передачу сигнала.
С точки зрения электромагнитной теории такое простое средство как коаксиальный кабель можно представить в виде схемы, состоящей из сопротивлений (R), индуктивностей (L), конденсаторов (С) и проводников (G) на единицу длины (как показано на рис. 10.3).

Рис. 10.3.1. Передача видеосигнала по коаксиальному кабелю

Рис. 10.3.2. Теоретическое представление коаксиального кабеля
При использовании короткого кабеля эта схема оказывает незначительное влияние на сигнал, но если кабель более длинный, ее влияние становится заметным. В последнем случае совокупность элементов R, L и С становится столь существенной, что действует как грубый фильтр нижних частот, который, в свою очередь, воздействует на амплитуду и фазу различных компонентов видеосигнала. Чем выше частоты сигнала, тем больше на них влияют неидеальные свойства кабеля.
Каждый кабель имеет однородное строение и собственный характеристический импеданс (полное сопротивление), который определяется элементами R, L, С и G на единицу длины.
Главное преимущество несимметричной передачи видеосигнала (о чем будет сказано несколько позже) основано на том, что характеристический импеданс передающей среды не зависит от частоты (это относится, главным образом, к средним и высоким частотам), в то время как сдвиг фазы пропорционален частоте.
Амплитудные и фазовые характеристики коаксиального кабеля на низких частотах в большой степени зависят от самой частоты, но так как в подобных случаях длина кабеля достаточно мала по сравнению с длиной волны сигнала, то влияние на передачу сигнала оказывается незначительным.
Когда характеристический импеданс коаксиального кабеля соответствует выходному импедансу источника видеосигнала и входному импедансу приемного устройства, происходит максимальная передача энергии между источником и приемником.
Для высокочастотных сигналов, каким является видеосигнал, согласование полного сопротивления имеет первостепенную важность. Когда импеданс не согласован, видеосигнал целиком или частично отражается назад к источнику, воздействуя не только на выходной каскад, но и на качество изображения. Отражение 100 % сигнала происходит, когда конец кабеля либо замкнут накоротко, либо оставлен открытым (незамкнут). Вся (100 %) энергия сигнала (напряжение х ток) передается только тогда, когда есть согласование между источником, средствами передачи и приемником. Вот почему мы настаиваем на том, чтобы последний элемент в цепи видеосигналов всегда заканчивался 75 Ом.
В видеонаблюдении принят характеристический импеданс 75 Ом для всего оборудования, передающего или принимающего видеосигналы. Поэтому нужно использовать коаксиальный кабель с полным сопротивлением 75 Ом. Но производители выпускают и другое оборудование, например 50 Ом (которое в отдельных случаях используется для вещательного или ВЧ-оборудования), но тогда между такими источниками и 75-омными приемниками должны использоваться преобразователи импеданса (пассивные или активные).

Рис. 10.4. Оплеточная машина для коаксиального кабеля
Согласование импеданса также необходимо при использовании передатчиков и приемников с кабелем витой пары, о чем мы поговорим ниже.
75 Ом коаксиального кабеля — это комплексное сопротивление, определяемое отношением напряжения/тока в каждой точке кабеля. Это не активное сопротивление, и поэтому его нельзя измерить обычным мультиметром.
Чтобы вычислить характеристический импеданс, мы воспользуемся электромагнитной теорией и представим кабель эквивалентной схемой, состоящей из элементов R, L, С и G на единицу длины.
Полное сопротивление этой схемы:
Zс = SQRT((R + jωL)/(G + jωC)) (48)
где, как уже объяснялось, R — сопротивление, L — индуктивность, G — проводимость и С — емкость между центральной жилой и экраном на единицу длины. Символ j — это мнимая единица (квадратный корень из -1), которая используется для представления комплексного сопротивления, ω = 2πf , где — f частота.
Если коаксиальный кабель имеет достаточно короткую длину (меньше двухсот метров), то R и G можно пренебречь, и в результате мы получим упрощенную формулу для полного сопротивления коаксиального кабеля:
Zc = SQRT(L/C) (49)
Эта формула означает, что характеристический импеданс не зависит от длины кабеля и частоты, но зависит от емкости и индуктивности на единицу длины. Однако, это не так, если длина кабеля (например, RG-59/U) превышает двести метров. В этом случае сопротивление и емкость имеют значение и оказывают влияние на видеосигнал. Ну а для достаточно коротких кабелей вышеприведенная аппроксимация вполне подходит.
Ограничения кабеля являются, главным образом, результатом накопленного сопротивления и емкости, которые настолько высоки, что упомянутое приближение (49) перестает работать, и сигнал получает значительные искажения. Это происходит, в основном, в форме падения напряжения, высокочастотной потери и групповой задержки.
Читать дальшеИнтервал:
Закладка: