Коллектив авторов - История электротехники
- Название:История электротехники
- Автор:
- Жанр:
- Издательство:Издательство МЭИ
- Год:1999
- Город:М.
- ISBN:5-7046-0421-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - История электротехники краткое содержание
Книга посвящена истории электротехнической науки и промышленности как в нашей стране, так и за рубежом. В ней рассмотрены все основные этапы развития электротехники, начиная с ее зарождения и до наших дней. Показана роль отечественных и зарубежных ученых, внесших наибольший вклад в развитие электротехники.
Подробно и конкретно рассмотрены основные достижения различных отраслей электротехники: электроэнергетики; электромеханики; электротехнологии; электрического транспорта; светотехники; электрических материалов и кабелей; промышленной электроники и электроизмерительной техники.
В главе «Персоналии» приведены краткие биографические сведения о крупнейших отечественных и зарубежных ученых и специалистах в области электротехники.
История электротехники - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Асинхронизированные машины другого типа — турбогенераторы мощностью 200 МВт были созданы на заводе «Электротяжмаш» (г. Харьков).
В последние годы выявилась возможность повышения КПД гидроагрегата за счет работы в зоне максимального КПД по универсальной характеристике при различных частотах вращения в зависимости от напора. Такая возможность особенно важна для низконапорных ГЭС при суточном регулировании, а также для гидроаккумулирующих электростанций.
К числу оригинальных решений гидрогенераторов относятся высоковольтные машины. Под руководством А.В. Иванова-Смоленского был разработан гидрогенератор мощностью 14,5 МВт, напряжением 121 кВ, изготовленный заводом «Уралэлектротяжмаш» и установленный на Сходненской ГЭС, где он прошел испытания. Накопленный опыт позволил внести ряд конструктивных усовершенствований и разработать проект гидрогенератора мощностью 103,5 МВт, напряжением 165 кВ для Днепровской ГЭС-2. К сожалению, этот интересный проект не получил реализации из-за неподготовленности производства, особенно высоковольтных обмоток.
6.2.8. СИНХРОННЫЕ КОМПЕНСАТОРЫ
Повышение коэффициента мощности в системах электропотребления достигается установкой конденсаторных батарей и применением синхронных двигателей в режиме генерации реактивной мощности. По мере развития энергетических систем наряду с синхронными двигателями стали применяться синхронные машины без активной нагрузки на валу, т.е. лишь для выработки реактивной мощности. Такие машины получили название синхронных компенсаторов. За счет выдачи и потребления реактивной мощности синхронные компенсаторы способствуют поддержанию напряжения в местах их подключения. Сначала синхронные компенсаторы выполнялись с воздушным охлаждением, а затем для более мощных машин был сделан переход на водородное охлаждение.
Применение синхронных компенсаторов позволяет снизить потери электроэнергии в линиях электропередачи. Для этого необходимо уменьшать передаваемую через линию реактивную мощность за счет источников такой мощности на приемном конце. Такими источниками в нашей стране и за рубежом стали синхронные компенсаторы. Наибольших успехов в создании таких машин добился завод «Уралэлектротяжмаш» и его главный конструктор по синхронным компенсаторам В.З. Пекне. Установленная мощность синхронных компенсаторов достигала 20–30% мощности линий. Наиболее мощные синхронные компенсаторы в нашей стране были: 1940 г. — 30 MB∙А, 1956 г. — 75 MB∙А, 1963 г. — 100 MB∙А и 1969 г. — 160 MB∙А.
Применение водородного охлаждения привело к снижению вентиляционных потерь на 25–35% с одновременным увеличением мощности в тех же габаритах. С точки зрения стоимости строительства решающее значение имел переход на наружную установку компенсаторов. Расчетно-теоретические исследования показали целесообразность использования частоты вращения 750 об/мин и применения явно-полюсной конструкции. Пуск компенсаторов осуществляется от сети через реактор.
Возбуждение компенсаторов осуществлялось от генераторов постоянного тока, сочлененных с асинхронными короткозамкнутыми двигателями и маховиками. Агрегат размещался в здании подстанции и был связан с компенсатором кабелями.
В 60-х годах для повышения эффективности действия синхронных компенсаторов вместо электромашинных возбудителей впервые в мире у нас в стране стали применять системы возбуждения с ртутными выпрямителями, получившие название ионных систем возбуждения. Однако радикальное упрощение системы возбуждения было достигнуто после освоения мощных кремниевых диодов и создания на их основе бесщеточных возбудителей. Такие возбудители, состоящие из обращенной синхронной машины и вращающегося выпрямителя, удалось разместить в объеме щеточно-контактно го аппарата. Разработка бесщеточных систем возбуждения была выполнена В.З. Пекне, В.Ф. Федоровым и В.К. Воробьем.
В 90-е годы получили развитие статические тиристорные компенсаторы. Их преимущество состоит в меньших потерях по сравнению с электромашинными компенсаторами, а недостаток — в несинусоидальности напряжения. Пока количество статических компенсаторов мало, поэтому в эксплуатации по-прежнему остаются синхронные компенсаторы.
Использование явления сверхпроводимости в электротехнике привело к разработке сверхпроводникового синхронного компенсатора. Его преимуществами являются: малые потери, синусоидальная кривая напряжения, низкое индуктивное сопротивление и возможность создания машин большой мощности. Испытание сверхпроводниковой машины в режиме синхронного компенсатора было проведено при мощности 20 MB∙А на стенде ВНИИэлектромаша. Особенно перспективны такие компенсаторы в случае использования высокотемпературных сверхпроводников (на уровне температуры жидкого азота). Разработка таких компенсаторов выполнена под руководством Л.И. Чубраевой. Следует заметить, что в связи с беспазовой конструкцией статора имеется возможность выполнения обмотки статора на напряжение 110 — 220 кВ. Наши работы вызвали большой интерес в зарубежных странах, в частности в Японии и США. В Японии проблема разработки сверхпроводниковых синхронных компенсаторов входит в государственную программу создания сверхпроводниковых электрических машин, а в США в последнее время образована фирма по производству компенсаторов, основанных на применении высокотемпературных сверхпроводников.
6.2.9. КРУПНЫЕ ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПЕРЕМЕННОГО ТОКА (КЭМ)
Эта группа машин всегда была важной составной частью отечественного электромашиностроения. Крупные электрические машины обеспечивают привод вспомогательного оборудования электростанции — насосов, мельниц, дымососов и вентиляторов, широко применяются в металлургии, нефте-, газо- и угледобыче, химической промышленности, ирригационных системах и многих других отраслях и объектах. Для производства КЭМ специально строились и развивались электромашиностроительные заводы.
Первый толчок к развитию крупного отечественного электромашиностроения был связан с осуществлением плана ГОЭЛРО. Завод «Электросила» в 20-х годах XX в. провел модернизацию асинхронных и синхронных двигателей, ранее выпускавшихся по технической документации иностранных фирм.
В 30-е годы были разработаны основные методики расчетов и проектирования КЭМ. Большой вклад в их создание внесли ученые Ленинградского политехнического института, Московского энергетического института, Всесоюзного электротехнического института (ВЭИ), заводов «Электросила» и ХЭМЗ. Выдвинулась целая плеяда ученых-электромашиностроителей: М.П. Костенко, А.Е. Алексеев, Б.П. Апаров, Р.А. Лютер, В.Т. Касьянов и др., работы которых заложили основы создания крупных машин переменного тока на многие годы вперед. Радикальное развитие получили теория, методы расчета и проектирования. Особое внимание уделялось новым конструкциям и материалам, автоматизации производственных процессов, и электросварочных работ, проектированию уникальных электрических машин.
Читать дальшеИнтервал:
Закладка: