Коллектив авторов - История электротехники
- Название:История электротехники
- Автор:
- Жанр:
- Издательство:Издательство МЭИ
- Год:1999
- Город:М.
- ISBN:5-7046-0421-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - История электротехники краткое содержание
Книга посвящена истории электротехнической науки и промышленности как в нашей стране, так и за рубежом. В ней рассмотрены все основные этапы развития электротехники, начиная с ее зарождения и до наших дней. Показана роль отечественных и зарубежных ученых, внесших наибольший вклад в развитие электротехники.
Подробно и конкретно рассмотрены основные достижения различных отраслей электротехники: электроэнергетики; электромеханики; электротехнологии; электрического транспорта; светотехники; электрических материалов и кабелей; промышленной электроники и электроизмерительной техники.
В главе «Персоналии» приведены краткие биографические сведения о крупнейших отечественных и зарубежных ученых и специалистах в области электротехники.
История электротехники - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
2.14. Яроцкий А.В. Борис Семенович Якоби. М.: Наука, 1988.
2.15. Гусев С.А. Очерки по истории электрических машин. М.: Госэнергоиздат, 1955.
2.16. Динамомашина в ее историческом развитии. Документы и материалы / Под ред. В.Ф. Миткевича. М.: Изд-во АН СССР, 1934.
2.17. Цверава Г.К. Аньош Йедлик. Л.: Наука, 1972.
2.18. Яроцкий А.В. Павел Львович Шиллинг. М.: Изд-во АН СССР, 1963.
2.19. Храмой А.В. Константин Иванович Константинов. М.: Госэнергоиздат, 1951.
2.20. Шателен М.А. Русские электротехники XIX в. М.: Госэнергоиздат, 1955.
Глава 3.
СТАНОВЛЕНИЕ ЭЛЕКТРОТЕХНИКИ КАК САМОСТОЯТЕЛЬНОЙ ОТРАСЛИ ТЕХНИКИ (1870–1890 гг.)
Электротехнические устройства не выходили за пределы лабораторий, пока не было у массового потребителя достаточно мощного и экономичного источника электрической энергии. В 1870 г. такой источник был создан. Следующие за этой датой 15–20 лет прошли как годы зарождения основных электротехнических устройств массового промышленного и бытового назначения, как годы становления новой отрасли техники. Это был поистине героический период истории электротехники.
3.1. ЭЛЕКТРИЧЕСКОЕ ОСВЕЩЕНИЕ
Первым по-настоящему массовым потребителем электрической энергии явилась электрическая лампочка. Она и по нынешний день осталась самым распространенным электротехническим устройством. Начало широкому практическому применению электрической энергии положила электрическая свеча П.Н. Яблочкова (1876 г.) [1.6; 2.20; 3.1].
Электрическая свеча выдающегося русского изобретателя электротехника Павла Николаевича Яблочкова (1847–1894 гг.) занимает особое место среди дуговых источников света [3.1]. Изобретение, о котором идет речь, не привело к массовому и устойчивому применению именно этого источника света, но оно заслуживает особой оценки и отдельного рассказа, поскольку именно электрическая свеча явилась тем детонатором, который вызвал бурный рост электротехнической промышленности.
На рис. 3.1 показан внешний вид электрической свечи, где видно, что в держателе с токопроводами укреплялись два параллельных угольных стержня, отделенных один от другого слоем каолина. В верхней части лампы была тонкая проводящая перемычка — запал: когда включали лампу, перемычка сгорала, на ее месте возникала дуга и угли выгорали, уменьшаясь в размерах, как стеариновая свеча.
Одна электрическая свеча могла гореть около 2 ч; при установке нескольких свечей в специальном фонаре, оборудованном переключателем для включения очередной свечи вместо перегоревшей, можно было обеспечить бесперебойное освещение в течение более длительного времени.
Чрезвычайно важно отметить, что изобретение электрической свечи способствовало внедрению в практику переменного тока. В течение всего предшествующего периода электрическая техника базировалась на постоянном токе (телеграфия, гальванотехника, минное дело). Дуговые электрические лампы с регуляторами также питались постоянным током. При этом положительный электрод сгорал быстрее отрицательного, поэтому его приходилось брать большего диаметра.
П.Н. Яблочков установил, что для питания свечи лучше применять переменный ток, в этом случае при электродах одинакового диаметра получалась вполне устойчивая дуга. В связи с тем что осветительные установки по системе П.Н. Яблочкова стали подключать к источникам переменного тока, заметно возрос спрос на генераторы переменного тока, которые раньше не находили практического применения. О значении электрической свечи в расширении производства электрических генераторов переменного тока можно судить по следующему примеру: если до появления электрической свечи завод З.Т. Грамма выпускал в течение 1870–1875 гг. по нескольку десятков машин в год, то за 1876 г. выпуск генераторов возрос почти до 1000 шт. Заводы изготовляли электрические генераторы, специально предназначенные для установок электрического освещения, и даже мощность машин обозначалась по числу питаемых электрических свечей (например, «шестисвечная машина»).

Значительному развитию электротехники способствовала также разработка П.Н. Яблочковым весьма эффективных систем «дробления электрической энергии», обеспечивавших возможность включения в цепь, питаемую одним генератором, нескольких дуговых ламп.
Среди способов «дробления», предложенных П.Н. Яблочковым, два получили практическое применение: секционирование обмотки якоря генератора (в результате получалось несколько независимых цепей, в которые включались свечи) и использование индукционных катушек (рис. 3.2). Первичные обмотки катушек включались последовательно в цепь, а ко вторичной обмотке в зависимости от ее параметров могли подключаться одна, две свечи и более. Если первичная цепь питалась постоянным током, то предусматривалось включение в нее специального прерывателя для наведения ЭДС во вторичных обмотках катушек.
На рис. 3.2 видно, что П.Н. Яблочков впервые использует индукционную катушку в качестве трансформатора. Схема интересна и тем, что в ней впервые получила свое оформление электрическая сеть с ее основными элементами: первичный двигатель — генератор — линия передачи — трансформатор — приемник.
Но значение электрической свечи этим не исчерпывается. Изобретение дешевого приемника электрической энергии, доступного для широкого потребителя, потребовало решения еще одной важнейшей электротехнической проблемы — централизации производства электрической энергии и ее распределения. П.Н. Яблочков первым указал на то, что электрическая энергия должна вырабатываться на «электрических заводах» и распределяться подобно тому, как доставляются к потребителям газ и вода.
Дальнейший прогресс электрического освещения был связан с изобретением лампы накаливания, которая оказалась более удобным источником света, имеющим лучшие экономические и световые показатели.
В 1870–1875 гг. над созданием лампы накаливания работал русский отставной офицер Александр Николаевич Лодыгин (1847–1923 гг.) [3.2]. Он решил построить летательный аппарат тяжелее воздуха, приводящийся в движение электричеством («электролет») [1.6; 2.19; 3.2]. Вполне естественно, что освещаться этот аппарат должен был электричеством. Дуговая лампа по разным соображениям не подошла, и А.Н. Лодыгин стал конструировать лампу накаливания с тонким угольным стерженьком, заключенным в стеклянном баллоне (рис. 3.3). Стремясь увеличить время горения, А.Н. Лодыгин предложил устанавливать несколько угольных стерженьков, расположенных так, чтобы при сгорании одного автоматически загорался следующий.
Читать дальшеИнтервал:
Закладка: