Джеффри Уэст - Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний
- Название:Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний
- Автор:
- Жанр:
- Издательство:Литагент Аттикус
- Год:2018
- Город:Москва
- ISBN:978-5-389-14631-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джеффри Уэст - Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний краткое содержание
Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
К чести Рассела, нужно сказать, что в 1874 г., после того как Фруд произвел революцию в проектировании кораблей, тот пошел на попятную и стал горячим сторонником методов и идей Фруда. При этом, однако, он довольно неубедительно утверждал, что сам независимо пришел к тем же выводам и провел те же опыты много лет назад. Собственно говоря, Рассел был основным партнером Брюнеля в постройке «Грейт Истерн» и действительно пытался работать с моделями, но, к сожалению, не осознавал ни их значения, ни теории, лежавшей в их основе.
Фруд строил уменьшенные модели кораблей от метра до трех длиной, протягивал их через вытянутые бассейны, наполненные водой, и измерял их сопротивление потоку воды и характеристики их устойчивости. Благодаря своему математическому образованию он обладал техническим аппаратом, позволявшим ему масштабировать полученные результаты на случай крупноразмерных судов.
Он выяснил, что основная величина, определяющая характер относительного движения модели, – это параметр, который назвали впоследствии числом Фруда. Он определяется как отношение квадрата скорости судна к произведению его длины на гравитационное ускорение. Такое труднопроизносимое определение может показаться несколько устрашающим, но на самом деле в нем нет ничего сложного: упоминаемое в нем «гравитационное ускорение» одинаково для всех предметов независимо от их размеров, формы и состава. Последнее утверждение попросту повторяет другими словами утверждение Галилея о том, что падающие предметы разной массы достигают земли за одно и то же время. Таким образом, в том, что касается действительно изменяющихся величин, число Фруда просто пропорционально отношению квадрата скорости к длине судна. Это отношение играет ключевую роль во всех задачах, касающихся движения чего бы то ни было, от летящей пули и бегущего динозавра до летящего самолета и плывущего корабля.
Основная суть открытия Фруда состояла в том, что, поскольку основные физические свойства остаются неизменными, объекты разных размеров, движущиеся с разными скоростями, ведут себя одинаково, если соответствующие им числа Фруда имеют одинаковое значение . Таким образом, подобрав длину и скорость модели так, чтобы ее число Фруда было тем же, что и у реального судна, можно изучать динамическое поведение полноразмерного корабля еще до его постройки.
Приведем простую иллюстрацию этого принципа на примере следующей задачи: с какой скоростью должна двигаться трехметровая модель, чтобы отражать движение корабля «Грейт Истерн» длиной 210 м со скоростью 20 узлов (чуть более 37 км/ч)? Чтобы числа Фруда (то есть отношения квадрата скорости к длине) корабля и модели были одинаковыми, скорость должна быть пропорциональна квадратному корню из длины. Отношение квадратных корней из длин этих объектов равна √(210 м / 3 м), то есть √70 = 8,4. Тогда скорость трехметровой модели, имитирующей движение «Грейт Истерн», должна быть приблизительно равна 20 / 8,4 = 2,5 узла, то есть около скорости пешехода. Другими словами, динамика модели корабля длиной 3 м, движущейся со скоростью всего 2,5 узла, соответствует поведению корабля «Грейт Истерн» длиной 210 м на скорости 20 узлов.
Я привел упрощенное описание этой методики: на самом деле в задачу обычно входят и другие параметры, аналогичные числу Фруда, которые позволяют прямо учесть другие динамические эффекты, например вязкость воды. Тем не менее этот пример иллюстрирует суть метода Фруда и дает общий шаблон для теории моделирования и масштабирования. Он знаменует переход от примитивного метода проб и ошибок, использования кустарных способов, которые верой и правдой служили нам в течение тысячелетий, к более аналитической, научно обоснованной стратегии решения проблем и конструирования самых разнообразных современных изделий, от компьютеров и кораблей до самолетов, зданий и даже компаний. Бассейны, подобные созданным Фрудом, до сих пор применяются для изучения поведения судов, а разработанные на их основе аэродинамические трубы, оказавшие сильное влияние на братьев Райт, играют аналогичную роль в проектировании самолетов и автомобилей. В центре процесса проектирования находятся теперь замысловатые процедуры компьютерного анализа, в которых для оптимизации работы той или иной конструкции используются принципы все той же теории масштабирования. Выражение «компьютерная модель» прочно вошло в наш словарь. Благодаря им мы сейчас можем «решать» уравнения Навье – Стокса или аналогичные им задачи – или моделировать их решения, – что повышает точность наших предсказаний.
Одно из забавных и непреднамеренных последствий этого прогресса состоит в том, что, например, почти все современные автомобили стали похожи друг на друга, потому что их производители, оптимизируя сходные рабочие параметры, решают одни и те же уравнения. Лет пятьдесят назад, когда такие большие вычислительные мощности еще не были доступны и, следовательно, точность прогнозирования была ниже, а мы меньше заботились об экономии топлива и уровне выброса отработанных газов, конструкции автомобилей были гораздо более разнообразными – и потому гораздо более интересными. Сравнить хотя бы «студебекер-хоук» 1957 г. или «роллс-ройс» 1927 г. с относительно скучной на вид «хондой-сивик» 2006 г. или «теслой» 2014 г., хотя последние машины и обладают гораздо лучшими рабочими характеристиками.
11. Сходство и подобие: безразмерные и масштабно-инвариантные числа
Развитие методики масштабирования, предложенной Фрудом, превратило ее к настоящему времени в мощный и сложный элемент инструментария науки и техники, в высшей степени эффективно используемый для решения широчайшего спектра задач. В общем виде эта методика была формализована лишь в начале ХХ в., когда выдающийся специалист по математической физике лорд Рэлей опубликовал в журнале Nature важную статью под названием «Принцип подобия» (The Principle of Similitude) [43] Lord Rayleigh. The Principle of Similitude // Nature. 1915. 95. P. 66–68.
. Этим термином он обозначал то, что мы называем теорией масштабирования. Главным образом он подчеркивал ту важнейшую роль, которую играют в любой физической системе особые величины, обладающие свойством безразмерности. Речь идет о сочетаниях переменных, подобных числу Фруда, значение которых остается неизменным независимо от используемой системы единиц измерения. Позвольте мне рассказать о них поподробнее.
Большинство величин, которые мы привыкли измерять в повседневной жизни, – например, расстояние, время или давление – зависит от того, в каких единицах их измеряют: например, в метрах, секундах, паскалях и так далее. Однако одну и ту же величину можно измерить в разных единицах: например, расстояние от Нью-Йорка до Лос-Анджелеса равно 3210 милям, но его же можно выразить в виде 5871 км. Эти разные числа выражают одно и то же . Точно так же расстояние от Лондона до Манчестера можно выразить в виде 278 миль или 456 км. Однако отношение расстояний между Нью-Йорком и Лос-Анджелесом и между Лондоном и Манчестером (будь то 3210 миль / 278 миль или 5871 км / 456 км) остается неизменным (и равным 14,89) независимо от того, какие используются единицы измерения.
Читать дальшеИнтервал:
Закладка: