Джеффри Уэст - Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний
- Название:Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний
- Автор:
- Жанр:
- Издательство:Литагент Аттикус
- Год:2018
- Город:Москва
- ISBN:978-5-389-14631-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джеффри Уэст - Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний краткое содержание
Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Масштаб SSC был огромен: он должен был иметь более 80 км в длину и разгонять протоны до энергии 20 триллионов электрон-вольт; стоимость проекта превышала 10 миллиардов долларов. Чтобы получить представление об этом масштабе, нужно вспомнить, что характерная энергия химических реакций, на которых основана жизнь, составляет порядка одного электрон-вольта. Энергия протонов в SSC должна была быть в восемь раз больше, чем в Большом адронном коллайдере, работающем сейчас в Женеве и оказавшемся недавно в центре внимания общественности в связи с открытием бозона Хиггса.
Кончина SSC была связана с несколькими разными, почти предсказуемыми причинами, в том числе с неизбежными финансовыми проблемами, состоянием экономики, негативным политическим образом Техаса, в котором строился ускоритель, недостаточным вдохновением руководства и так далее. Но одной из главных причин краха этого проекта был рост негативных взглядов на традиционную «большую науку» вообще и физику в частности [44] John Horgan. The End of Science: Facing the Limits of Science in the Twilight of the Scientific Age. N. Y.: Broadway Books, 1996.
. Они принимали множество разных форм, но особенно часто многим из нас приходилось сталкиваться с одним высказыванием, которое я уже цитировал выше: «Если XIX и XX века были веками физики, то XXI век будет веком биологии».
Даже самому высокомерному и фанатичному физику трудно спорить с мыслью о том, что в XXI в. биология, по всей вероятности, должна затмить физику в качестве «главной науки». Но особенно раздражал многих из нас делавшийся из этого вывод (который часто высказывался прямым текстом) о том, что дальнейшие фундаментальные исследования в физике такого рода больше не нужны, так как мы уже знаем все, что нужно знать. К сожалению, жертвой именно такого ошибочного провинциального мышления и пал проект SSC.
В то время я руководил в Лос-Аламосской национальной лаборатории программой физики высоких энергий, в рамках которой мы принимали значительное участие в создании одного из двух крупных детекторов для SSC. Поясню для тех, кто не знаком с этой терминологией, что «физикой высоких энергий» называют раздел физики, занимающийся решением фундаментальных вопросов об элементарных частицах, взаимодействии между ними и их влиянии на космологические процессы. Я был (и остаюсь до сих пор) физиком-теоретиком, и мои основные исследовательские интересы были в то время сосредоточены именно в этой области. Моя рефлекторная реакция на такие провокационные заявления относительно расхождения путей физики и биологии сводилась к тому, что биология почти наверняка будет главенствующей наукой XXI в., но, чтобы достичь настоящего успеха, она должна будет усвоить некоторые из элементов численной, аналитической, предсказательной культуры, которые уже принесли такой успех физике. Биология должна будет интегрировать в свой традиционный подход, опирающийся на статистические, феноменологические и качественные аргументы, более теоретическую систему, основанную на фундаментальных математических или вычислительных принципах. К стыду своему, должен признать, что в то время я знал о биологии очень мало, и эти выступления проистекали в основном из высокомерия и невежества.
Тем не менее я решил подкрепить слово делом и начал думать о том, как парадигма и культура физики могла помочь в решении интересных задач биологии. Разумеется, уже существовали физики, совершавшие чрезвычайно успешные экскурсы в область биологии, и самым замечательным из них был, пожалуй, Фрэнсис Крик, определивший вместе с Джеймсом Уотсоном структуру ДНК, что произвело настоящую революцию в нашем понимании генома. Другим был великий физик Эрвин Шредингер, один из основателей квантовой механики, прекрасная книжка которого, вышедшая в 1944 г. под названием «Что такое жизнь?», оказала на биологию большое влияние [45] Erwin Schrödinger . What Is Life? Cambridge, UK: Cambridge University Press, 1944. (Впервые на русском языке книга вышла в переводе А. А. Малиновского в 1947 г.; сейчас доступны и позднейшие переиздания. – Прим. перев. и ред. )
. Эти примеры доказывали самым вдохновляющим образом, что в физике может найтись нечто интересное для биологии, и стимулировали слабый, но постоянно набирающий силу поток физиков, переходящих границу между этими двумя науками, который привел к зарождению новой дисциплины – биофизики.
К моменту кончины SSC мне было слегка за пятьдесят и, как я уже говорил в начале этой книги, я все более остро осознавал неизбежное разрушительное воздействие старения и ограниченность жизни. С учетом неблестящих результатов, показанных мужчинами прошлых поколений моей семьи в области долголетия, мне казалось естественным начать свои размышления о биологии с изучения старения и смертности. Поскольку эти свойства относятся к наиболее универсальным и фундаментальным характеристикам всего живого, я наивно полагал, что о них должно быть известно почти все. Однако, к большому своему удивлению, я не только узнал, что не существует общепринятой теории старения и смертности, но и сама область исследования этих вопросов оказалась маленькой и довольно застойной. Более того, выяснилось, что изучались лишь немногие из тех вопросов, постановка которых казалась бы физикам совершенно естественной, – например, тех, которые я задавал в первой главе. В частности, я имею в виду вопросы о том, откуда берется характерный масштаб продолжительности человеческой жизни в сто лет и какой могла бы быть численная, обладающая предсказательной силой теория старения.
Смертность – важное свойство жизни. Собственно говоря, она неявным образом является значимым элементом теории эволюции. Один из необходимых компонентов процесса эволюции состоит в том, что особи рано или поздно умирают, что позволяет их потомству распространять новые комбинации генов и в конце концов приводит к адаптации новых черт и вариантов в процессе естественного отбора и к росту многообразия видов. Все мы должны умереть, чтобы нечто новое могло расцветать, исследовать, приспосабливаться и развиваться на нашем месте. Эту идею красноречиво выразил Стив Джобс [46] Вступительное слово Стива Джобса на церемонии вручения дипломов Стэнфордского университета 12 июня 2005 г.
:
Никто не хочет умирать. Даже те, кто мечтает попасть на небо, не готовы ради этого умереть. И тем не менее всем нам суждена смерть. Ее не избежал никто, и так оно и должно быть, потому что смерть – это, по всей вероятности, самое лучшее из всех изобретений жизни. Это проводник изменений жизни. Она убирает старое, чтобы расчистить дорогу новому.
Учитывая огромное значение смерти и ее предшественника, процесса старения, я рассчитывал, что, взяв какой-нибудь учебник вводного курса биологии, я найду в нем целую главу, посвященную смерти в рамках обсуждения основных черт жизни, подобного обсуждениям рождения, роста, воспроизводства, обмена веществ и так далее. Я ожидал встретить дидактическое изложение механистической теории старения, которое содержало бы простой расчет, показывающий, почему мы живем именно около ста лет, и отвечающий на все заданные выше вопросы. Не тут-то было. Я вообще не нашел ни каких-либо упоминаний о такой теории, ни какого-либо намека на то, что эти вопросы кого-либо интересуют. Это было весьма удивительно, особенно с учетом того, что, если не считать рождения, смерть является наиболее выдающимся событием биологической жизни человека. Будучи физиком, я засомневался, до какой степени биологию можно считать «настоящей» наукой (имея в виду, конечно же, ее сходство с физикой!) и как она собирается стать главной наукой XXI в., если не занимается такого рода фундаментальными вопросами.
Читать дальшеИнтервал:
Закладка: