Джеймс Глик - Хаос. Создание новой науки
- Название:Хаос. Создание новой науки
- Автор:
- Жанр:
- Издательство:АСТ: CORPUS
- Год:2021
- Город:Москва
- ISBN:978-5-17-116057-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джеймс Глик - Хаос. Создание новой науки краткое содержание
Хаос. Создание новой науки - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
«Политика повлияла на самый стиль моего творчества, причем таким образом, о котором я в дальнейшем очень сожалел. Я использовал выражения вроде: „Естественно…“, „Весьма интересным наблюдением является то, что…“ На самом деле было все что угодно, кроме естественного. Все эти „интересные наблюдения“ представляли собой результат долгих и сложных исследований, поиска доказательств и самокритики. Я взял философский и несколько отстраненный тон, поскольку хотел быть принятым. Рискни я заикнуться, что предлагаю радикальный подход, читатели тут же потеряли бы всякий интерес. Позже некоторые из этих утверждений ко мне вернулись – уже другие люди говорят: „Естественно заметить, что…“ И это совсем не то, чего я ожидал» [176].
Обращаясь к прошлому, Мандельброт с грустью вспоминал, что реакция представителей разных областей на его исследования была весьма предсказуемой. Первый вопрос всегда звучал так: «Кто вы и почему интересуетесь нашей дисциплиной?» Далее следовало: «Какое отношение рассказанное вами имеет к тому, что делаем мы? Почему вы не объясняете свои теории на основе уже известных нам фактов?» И наконец: «Вы уверены, что используете стандартную математику?» (Да, более чем уверен!) «А почему же тогда мы ничего о ней не знаем?» (По причине того, что она, будучи стандартной, весьма малопонятна.)
В этом отношении математика отличается от физики и иных прикладных наук. Раздел физики, однажды устарев и став малопродуктивным, обычно навсегда уходит в прошлое. Далее он может восприниматься как любопытный с точки зрения исторического развития и, возможно, послужить источником вдохновения для физика наших дней, однако исчерпавшая себя тема, как правило, «умирает» в силу весьма веских причин. Математика же, напротив, полна тропинок и окольных путей, которые в одни времена, казалось бы, ведут в никуда, но в другие становятся магистралью новой науки. Потенциал применения абстрактной идеи на практике предсказать невозможно. Поэтому математики оценивают чистую истину с эстетической точки зрения, пытаясь, по примеру художников, найти в ней некую красоту и изящество. Так и Мандельброт, с его любовью к древностям, извлек из небытия довольно многообещающую область математики, которую грозила погрести под собой пыль веков.
В самую последнюю очередь собеседники Мандельброта осведомлялись: «Какого мнения математики о вашей работе?» (Им все равно, поскольку она не обогащает математику. По правде говоря, они удивлены тем, что их идеи находят свое отражение в природе.)
В конце концов термином «фрактал» стали обозначать способ описания и анализа (в том числе количественного) множества иррегулярных и фрагментарных, зазубренных и разъединенных объектов – начиная от кристаллообразных кривых-снежинок и заканчивая прерывистой «пылью» галактик. Фрактальная кривая отражает организующую структуру, скрытую в невероятной сложности таких форм. Студенты в состоянии понять фракталы и даже «поиграть» с ними – ведь фракталы столь же первичны, сколь и элементарные формы Евклида. Простейшими программами для создания фрактальных изображений заинтересовались фанаты персональных компьютеров.
С наибольшим энтузиазмом идеи Мандельброта восприняли люди, которые занимались прикладной наукой – изучали нефть, горные породы или металлы, а особенно специалисты исследовательских центров корпораций. Например, к середине 1980-х годов довольно много людей в огромном научном подразделении корпорации Exxon трудились над проблемами фракталов [177]. В компании GeneralElectric фракталы были приняты на вооружение в качестве основного инструмента для изучения полимеров, а также для сугубо секретных изысканий в сфере безопасности ядерных реакторов. В Голливуде им нашли, пожалуй, самое эксцентричное применение: с помощью фракталов создавали невероятно реалистичные пейзажи, земные и инопланетные. Фракталы также помогали в работе над спецэффектами в кинофильмах.
Модели, открытые в начале 1970-х годов Робертом Мэем, Джеймсом Йорком и другими учеными, объекты, в которых весьма сложно отделить упорядоченное от хаотичного, содержали в себе неожиданную регулярность. Эта регулярность могла быть описана лишь на языке соотносимости больших и малых масштабов. Структуры, отворившие дверь в нелинейную динамику, оказались фрактальными. Новая геометрия вложила оригинальный инструментарий в руки практиков: физиков, химиков, сейсмологов, металлургов, физиологов и специалистов по теории вероятности. Все они свято уверовали, что геометрия Мандельброта воплощает в себе измерения самой природы, и пытались убедить в этом других.
Принявшие на вооружение новую науку сильно повлияли и на общепринятую математику, равно как и на традиционную физику. Однако сам Мандельброт так и не снискал искреннего уважения представителей этих дисциплин, которым, впрочем, все равно пришлось признать его успех. Один математик рассказывал друзьям, как проснулся ночью в холодном поту, дрожа всем телом [178]. Ему привиделся жуткий кошмар. Словно бы он умер и услышал голос с небес – вне всякого сомнения, глас Бога: «Знаешь, в этом Мандельброте действительно что-то есть!»
Мысль о самоподобии, о том, что великое может быть вложено в малое, издавна греет человеческую душу – особенно души западных философов. По представлениям Лейбница, капля воды содержит в себе весь блистающий разноцветьем мир, включая и другие капли и живущие в них другие вселенные. «Увидеть мир в песчинке» – призывал Блейк, и некоторые ученые пытались следовать его завету. Первые исследователи семенной жидкости склонны были видеть в каждом сперматозоиде своего рода гомункулуса, то есть крошечного, но уже полностью сформировавшегося человечка.
Однако в качестве научного принципа самоподобие выглядело весьма бледно по довольно простой причине: оно расходилось с реальными фактами. Сперматозоиды вовсе не являются уменьшенной копией человека, будучи гораздо более интересными элементами, а процесс онтогенеза несравненно сложнее тривиального увеличения. Первоначальное представление о самоподобии как организующем принципе происходило из ограниченных знаний человека о масштабах. Как представить чересчур огромное и слишком крошечное, стремительное и замедленное, если не распространить на него уже известное?
Подобные представления бытовали до тех пор, пока человек не вооружился телескопами и микроскопами. Сделав первые открытия, ученые поняли, что каждое изменение масштаба обнаруживает новые феномены и новые типы поведения. Современные специалисты в области физики элементарных частиц не видели этому конца: каждый новый, более мощный ускоритель расширял поле зрения исследователей, делая доступными все более мелкие частицы и более краткие временные промежутки, и каждое такое расширение давало новую информацию.
Читать дальшеИнтервал:
Закладка: