Джеймс Глик - Хаос. Создание новой науки
- Название:Хаос. Создание новой науки
- Автор:
- Жанр:
- Издательство:АСТ: CORPUS
- Год:2021
- Город:Москва
- ISBN:978-5-17-116057-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джеймс Глик - Хаос. Создание новой науки краткое содержание
Хаос. Создание новой науки - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В науке, как правило, превалируют физические причины. Действительно, когда астрономия и физика вышли на свет из тени религии, телеологические аргументы, аргументы «от замысла» (например, «Земля такова, какова она есть, чтобы человечество могло делать то, что делает») были выброшены за ненадобностью. Однако в рамках биологии Дарвин твердо установил, что телеологии принадлежит главная роль при рассмотрении причины. Биологическая вселенная, может, и не создана по замыслу Творца, но облик ее формируется естественным отбором, который действует не на уровне генов или эмбрионов, а на уровне «конечного продукта». Таким образом, объяснение формы организма или функции отдельного органа потребностями адаптации всегда заостряет внимание на причине – именно конечной, а не физической. Везде, где торжествует дарвиновское мышление, понятие «конечной причины» остается в науке. Современный антрополог, размышляя о каннибализме или ритуальных жертвоприношениях, стремится – правильно или нет – задать вопрос об их цели. Дарси Томпсон, знакомый с таким подходом, настоятельно просил биологов помнить также и о физической причине, рассматривая механизм и телеологию в единстве. Он посвятил себя изучению математической и физической природы сил, которые созидают жизнь. Однако адаптационная теория не сдавала позиций, и подобные идеи казались неуместными. Изучение того, как древесный лист в ходе естественного отбора сделался эффективным приемником солнечной энергии, превратилось в разностороннюю и весьма плодотворную проблему. Лишь намного позже некоторые ученые начали задумываться над тем, что осталось неразгаданным: при всем возможном многообразии существует не так уж много форм листьев, а очертания листа отнюдь не предопределены его назначением.
Математика, доступная Дарси Томпсону, не позволяла доказать то, что ему хотелось. Самое большее, что он мог, – это рисовать. Ученый изображал, в частности, черепа родственных видов животных в сетке координат, демонстрируя, что элементарное геометрическое преобразование превращает один объект в другой. Очертания простых организмов, столь обманчиво схожих со струями жидкости, брызгами и другими порождениями водного потока, он объяснял физическими причинами – действием гравитации и поверхностного натяжения, которые, однако, не могли проделать приписываемую им созидательную работу. Почему же тогда Альберт Либхабер, начиная свои опыты с жидкостью, думал о работе Томпсона «О росте и форме»?
Представления Дарси Томпсона о тех силах, которые придают форму живым объектам, ближе чего угодно еще в биологии подводили к рассмотрению динамических систем. Он мыслил жизнь такой, какая она есть: всегда пребывающей в движении, постоянно реагирующей на ритмы – «скрытые в глубине ритмы роста», которые порождают, по его мнению, универсальные формы [268]. Ученый считал, что исследует не материальные формы вещей, а их динамику – «интерпретацию изменения энергии на языке силы» [269]. Томпсон достаточно ориентировался в математике, чтобы понять: каталогизация форм ничего не доказывает. Но также он был в большой степени поэтом, чтобы поверить, что ни случайность, ни цель не объясняют поразительную универсальность форм, выявленных им за долгие годы наблюдения природы. Объяснение скрывалось в физических законах, которые регулируют силы и рост непостижимым для человеческого разума образом. Снова Платон! За конкретными видимыми формами вещества должны лежать некие призрачные очертания, невидимые лекала. Формы в движении.
Либхабер выбрал для своего эксперимента жидкий гелий, имевший чрезвычайно малую вязкость, благодаря чему вращение жидкости начиналось при малейшем толчке. Аналогичный опыт с текучей средой средней вязкости, вроде воды или воздуха, требовал бы гораздо большей емкости. Низкая вязкость позволяла ученому сделать конструкцию более чувствительной к нагреванию. Для инициирования конвекции в ячейке, размеры которой измерялись миллиметрами, между температурами верхней и нижней поверхностей требовалась разница лишь в тысячную долю градуса. Именно поэтому экспериментатор сделал ячейку столь крошечной; в объеме покрупней, где жидкий гелий мог бы вращаться в большем пространстве, аналогичные движения жидкости потребовали бы еще меньшего нагрева. Так, в ячейке, у которой каждая сторона была бы в десять раз больше, то есть в тысячу раз большей по объему (размером с крупную виноградину), конвекция начиналась бы уже при разнице температур в одну миллионную долю градуса. Подобными ничтожнейшими температурными вариациями нельзя было бы управлять.
Обдумывая ход эксперимента и используемую конструкцию, Либхабер и его помощник стремились исключить любое проявление беспорядочности. Они сделали все возможное, чтобы выделить то самое движение, которое собирались изучать. Перемещение жидкости, начиная от плавного ее течения и заканчивая турбулентностью, представляется как движение в пространстве. Его сложность – это сложность пространственная, его волнения и водовороты – пространственный хаос. Но Либхабер искал такие ритмы, которые проявили бы себя как изменения во времени. Время являлось и полем для опыта, и мерилом. Либхабер как бы «сплющил» пространство почти до одномерной точки и довел до крайнего предела технику, использованную его предшественниками в экспериментах с жидкостью. Все знали, что вращение жидкости в замкнутом объеме – конвекция Рэлея – Бенара в прямоугольной емкости или течение Куэтта – Тейлора в цилиндре – гораздо проще измерить, чем поведение ничем не стесненного потока, например океанских волн или воздушных течений. В открытом потоке пограничная поверхность остается свободной, во много раз увеличивая сложность поведения системы.
Поскольку конвекция в прямоугольном сосуде порождает валики жидкости, похожие формой на хот-дог или, как в данном случае, скорее на семена кунжута, Либхабер сконструировал свою ячейку так, чтобы хватило места для двух валов. Жидкий гелий должен был подняться в центре, а затем, образовав левый и правый валики, спуститься вниз по стенкам ячейки. Предполагалось, что, поскольку процесс пойдет в замкнутом пространстве, колебания будут ограниченными. Четкие линии и взвешенные пропорции обещали устранить любые помехи. Словом, Либхабер «заморозил» пространство так, чтобы можно было играть со временем.
Как только процесс будет запущен и жидкий гелий начнет вращаться внутри ячейки, помещенной в вакуумный контейнер внутри емкости с азотом, экспериментатору нужно будет каким-то образом наблюдать за происходящим. Поэтому Либхабер встроил два микроскопических температурных датчика в верхнюю сапфировую пластину, покрывавшую ячейку. Графопостроитель непрерывно фиксировал их показания. Таким образом ученый контролировал температуру в двух точках на верхней поверхности жидкости. Это было настолько чувствительное и изящное устройство, что, по замечанию одного из физиков, Либхаберу удалось обмануть природу [270].
Читать дальшеИнтервал:
Закладка: