Джеймс Глик - Хаос. Создание новой науки

Тут можно читать онлайн Джеймс Глик - Хаос. Создание новой науки - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство АСТ: CORPUS, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Джеймс Глик - Хаос. Создание новой науки краткое содержание

Хаос. Создание новой науки - описание и краткое содержание, автор Джеймс Глик, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Хаос. Создание новой науки» – мировой бестселлер американского журналиста Джеймса Глика, переведенный более чем на два десятка языков, в котором он рассказывает историю возникновения науки о хаосе. Начав со случайного открытия метеоролога Эдварда Лоренца, пытавшегося создать модель долгосрочного прогноза погоды, Глик последовательно реконструирует всю цепочку внезапных озарений и необычных экспериментов, которые привели ученых к осознанию, что существуют еще неизвестные им универсальные законы природы. Глик не только рассказывает историю рождения новой науки, но и размышляет над тем, каким образом происходит научный прогресс и какова в нем роль безумных гениев, занимающихся поисками нестандартных решений вопреки имеющемуся знанию.

Хаос. Создание новой науки - читать онлайн бесплатно ознакомительный отрывок

Хаос. Создание новой науки - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Джеймс Глик
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Эксперименты с миниатюрным сверхточным шедевром заняли два года, но, по признанию создателя, для его полотна то была самая подходящая кисть, достаточно удобная и не громоздкая. Он наконец увидел все. Проводя свой опыт днем и ночью, час за часом, Либхабер обнаружил на пороге турбулентности более запутанное поведение, чем мог себе представить. Появился целый каскад удвоений периодов. Либхабер ограничил и изолировал движение жидкости, поднимающейся при нагревании. Было установлено, что процесс начинается с первой бифуркации. Движение запускается сразу же, как только нижняя пластина из чистой меди нагревается достаточно, чтобы вывести жидкость из состояния покоя. При температуре на несколько градусов выше абсолютного нуля для этого требовалась лишь одна тысячная доля градуса. Жидкость на дне ячейки, нагреваясь, расширяется и становится легче прохладной жидкости на поверхности. Чтобы дать теплым нижним слоям вещества подняться, верхние, более холодные, должны «утонуть» – опуститься вниз. В процессе такого перемещения в жидкости образуются два вращающихся «цилиндра». Как только скорость вращения стабилизируется, в системе устанавливается динамическое равновесие. Тепловая энергия постоянно переходит в энергию движения, а затем, через трение, обратно в теплоту, которая рассеивается через прохладную верхнюю пластину.

До этого момента Либхабер воспроизводил настолько широко известный в гидродинамике опыт, что к нему уже относились с пренебрежением. «Это была классическая физика, – замечал ученый, – что, к несчастью, означало: старо, а значит, неинтересно» [271]. Он рассматривал точно такой же поток, какой смоделировал Лоренц на базе системы из трех уравнений. Однако реальный опыт – проводившийся с реальной жидкостью, в ячейке, сконструированной инженером, в лаборатории, куда проникают вибрации с забитых транспортом улиц Парижа, – делал сбор данных проблемой куда более сложной, чем генерирование чисел с помощью компьютера.

Либхабер, как и другие подобные ему экспериментаторы, для записи показаний температурных датчиков, встроенных в пластину над ячейкой, использовал простой графопостроитель. В состоянии равновесия, после первой бифуркации, температура в любой точке оставалась более или менее постоянной – и перо чертило прямую линию. С увеличением нагрева обнаруживалась бо́льшая нестабильность. В каждом витке появлялся узел, который равномерно двигался взад и вперед, и такое его перемещение выявляло колебания температуры между двумя значениями – верхним и нижним. В этот период перо графопостроителя чертило на бумаге волнистую линию.

По одной непрерывно меняющейся и дрожащей от помех линии температур выяснить точное время появления новых бифуркаций или установить их природу невозможно. График образует беспорядочные подъемы и спады, которые кажутся почти такими же случайными, как и кривые продаж переживающего лихорадку фондового рынка. Либхабер проанализировал полученные данные, построив на их основе спектральные диаграммы. Он намеревался выявить главные частоты, скрытые в меняющихся значениях температуры. Создание спектральной диаграммы на основе экспериментальных данных похоже на построение графика звуковых частот, составляющих сложные аккорды симфонии. Внизу такого графика всегда проходит сбивчивая, дрожащая линия – фон, экспериментальные шумы. Главные тона проявляются как вертикальные пики: чем громче звук, тем выше пик. Сходным образом, если данные воспроизводят доминантную частоту, например, ритм пульсирует раз в секунду, эта частота тоже будет выглядеть на спектральной диаграмме как пик.

В эксперименте Либхабера период первой появившейся волны составлял около двух секунд, а следующая бифуркация привела к некоторым изменениям. Вал в жидкости продолжал колебаться, температура, показываемая болометром, продолжала расти и падать с определенной цикличностью, но на нечетных циклах стала чуть выше, чем была раньше, а на четных – чуть ниже. Фактически предельное значение температуры расщепилось, образовав два различных максимума и два минимума. Вычерчиваемая графопостроителем линия, весьма сложная для интерпретации, фиксировала как бы одно колебание поверх другого, своего рода «метаколебание». На спектральной диаграмме описанный эффект выглядел четче. Прежняя частота еще в значительной мере присутствовала, ведь температура, как и раньше, увеличивалась каждые две секунды. Однако теперь появилась новая частота – ровно вдвое меньше прежней, поскольку в системе проявился некий повторяющийся каждые четыре секунды компонент [272]. По мере того как происходили новые и новые бифуркации, стало возможно различить необычайно устойчивый рисунок: новые частоты были вдвое меньше предыдущих. Диаграмма с четвертыми, восьмыми и шестнадцатыми долями уже напоминала забор, в котором чередовались высокие и низкие рейки.

Человек, ищущий в беспорядочной информации скрытые формы, должен проделать один и тот же опыт десятки и сотни раз, прежде чем начнут проясняться закономерности в поведении крошечной ячейки. Когда Либхабер и его помощник постепенно увеличивали температуру и система переходила от одного состояния равновесия к другому, порой наблюдались весьма специфичные явления. Иногда появлялись промежуточные частоты, плавно скользившие по спектральной диаграмме и вскоре исчезавшие. Иногда изменялась наблюдаемая геометрия – и вместо двух валиков жидкости появлялось три. И как в такой ситуации понять, что же на самом деле происходит внутри маленькой стальной ячейки?

Два способа наблюдения бифуркаций Когда в опыте подобном тому который - фото 27

Два способа наблюдения бифуркаций. Когда в опыте, подобном тому, который поставил Либхабер, наблюдаются устойчивые колебания, их образ в фазовом пространстве представляет собой петлю, повторяющую саму себя через равные промежутки времени ( вверху слева ). Экспериментатор, строящий спектральную диаграмму, увидит тогда один высокий пик для данной частоты ( внизу слева ). После бифуркации удвоения периода система уже дважды образует петлю, прежде чем повторит сама себя ( вверху в центре ), а ученый видит еще и новый пик, соответствующий половине прежней частоты, или удвоенному прежнему периоду ( внизу в центре ). Новые удвоения периодов наделяют спектральную диаграмму все большим и большим числом пиков ( справа ).

Знай тогда Либхабер об открытии Фейгенбаумом универсальности, он бы точно представлял, где искать нужные бифуркации и как их называть. К 1979 году все больше математиков и сведущих в математике физиков обращали внимание на новую теорию Фейгенбаума, но в массе своей ученые, знакомые с трудностями изучения реальных физических систем, считали, что у них есть веские основания воздерживаться от каких-либо определенных суждений на сей счет. В одномерных системах вроде тех, которые исследовали Мэй и Фейгенбаум, сложность – это одно, но в двух-, трех– или четырехмерных системах реальных механизмов, конструируемых инженерами, – совсем другое. Для ее описания требуются не просто разностные, а громоздкие дифференциальные уравнения. Более того, еще одна пропасть отделяла низкоразмерные системы от систем жидкостных потоков, которые физики рассматривали как системы с потенциально бесконечным числом измерений. Даже ячейка Либхабера, столь искусно сработанная, содержала, по сути, несметное число частиц жидкости, и каждая из них обладала как минимум возможностью двигаться независимо. А значит, при определенных обстоятельствах любая частица могла стать источником нового изгиба или вихря.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джеймс Глик читать все книги автора по порядку

Джеймс Глик - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Хаос. Создание новой науки отзывы


Отзывы читателей о книге Хаос. Создание новой науки, автор: Джеймс Глик. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x