Джеймс Глик - Хаос. Создание новой науки

Тут можно читать онлайн Джеймс Глик - Хаос. Создание новой науки - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство АСТ: CORPUS, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Джеймс Глик - Хаос. Создание новой науки краткое содержание

Хаос. Создание новой науки - описание и краткое содержание, автор Джеймс Глик, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Хаос. Создание новой науки» – мировой бестселлер американского журналиста Джеймса Глика, переведенный более чем на два десятка языков, в котором он рассказывает историю возникновения науки о хаосе. Начав со случайного открытия метеоролога Эдварда Лоренца, пытавшегося создать модель долгосрочного прогноза погоды, Глик последовательно реконструирует всю цепочку внезапных озарений и необычных экспериментов, которые привели ученых к осознанию, что существуют еще неизвестные им универсальные законы природы. Глик не только рассказывает историю рождения новой науки, но и размышляет над тем, каким образом происходит научный прогресс и какова в нем роль безумных гениев, занимающихся поисками нестандартных решений вопреки имеющемуся знанию.

Хаос. Создание новой науки - читать онлайн бесплатно ознакомительный отрывок

Хаос. Создание новой науки - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Джеймс Глик
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Его коллеге Пайтгену изучение феномена сложности давало шанс заложить оригинальные традиции в науке, вместо того чтобы просто искать решения проблем. «Начав сегодня трудиться в такой удивительной новой области, как эта, талантливый ученый сумеет предложить нетривиальные решения уже через несколько дней, неделю или спустя месяц», – заметил Пайтген. Дело в том, что предмет изучения еще не структурирован. «В структурированной области, – продолжал он, – понятно, что изучено, что не изучено и что уже пытались изучить, но не смогли. При этом приходится работать над какой-то давно известной проблемой – иначе ничего не получится. И она, разумеется, должна быть сложной, иначе бы ее уже давно решили» [297].

У Пайтгена не было того предубеждения, с которым большинство математиков относились к компьютерным экспериментам. Само собой разумелось, что все результаты должны быть строго доказаны стандартными методами, иначе это будет не математика. Зафиксировать графический образ на экране не означало доказать его право на существование на языке теорем и доказательств. И все-таки возможность генерирования такого изображения уже сама по себе изменяла эволюцию математики. Как полагал Пайтген, компьютерные исследования позволили ученым избрать более естественную стезю развития науки. Математик мог на время абстрагироваться от требования точности доказательства и, подобно физику, следовать туда, куда приведут его эксперименты. Огромная производительность компьютерных вычислений и визуальные ключи к интуитивным ощущениям дают некий надежный путь и избавляют ученых от блуждания в потемках. Открыв неизвестные тропы и выделив новые объекты, математик может вернуться к традиционному доказательству. «Сила математики в строгости, – отметил Пайтген. – Она дает нам возможность продолжать ту линию мысли, в которой мы абсолютно уверены. На том стояли и будут стоять математики. Но почему бы не обратить внимание на феномены, которые сейчас могут быть поняты лишь отчасти? Более строгое знание о них, возможно, добудут грядущие поколения. Бесспорно, строгость важна, но не до такой степени, чтобы отказаться от изучения чего-то, потому что я не могу доказать это сейчас» [298].

К началу 1980-х годов персональные компьютеры уже выполняли расчеты достаточно точно, что позволяло строить красочные изображения множества Мандельброта. Многочисленные их любители быстро обнаружили, что разглядывание этих изображений при все большем увеличении дает четкое ощущение увеличивающегося масштаба. Если бы множество Мандельброта было размером с планету, компьютер мог бы показать и его целиком, и элементы размером с город, и детали, соразмерные со зданиями, отдельными комнатами в них, книгами на полках, письмами в ящиках стола, бактериями в воздухе или даже атомами различных веществ. Люди, рассматривая такие картины, замечали, что при любом масштабировании обнаруживались схожие образы и одновременно каждый масштаб обладал своими особенностями. Подобные микроскопические ландшафты генерировались одним набором из нескольких строчек компьютерного кода [299].

Граница находится там, где программа для построения множества Мандельброта тратит больше всего времени и допускает наибольшее количество компромиссов. Когда результат неясен после ста, или тысячи, или десяти тысяч итераций, программа не может быть полностью уверена, что точка принадлежит множеству Мандельброта. Кто знает, что принесет миллионная итерация? Поэтому программы, которые строят самые захватывающие изображения множества с наиболее детальным увеличением, выполняются на мощных вычислительных машинах или на компьютерах с параллельной обработкой данных, где тысячи индивидуальных процессоров производят вычисления по одним и тем же правилам. Граница располагается там, где точки медленнее всего ускользают от притяжения множества, будто балансируя между двумя соревнующимися аттракторами, один из которых располагается в нуле, а другой – на бесконечности [300].

Когда ученые переключились с самого множества Мандельброта на новые задачи о представлении реальных физических явлений, на передний план вышли свойства границы. Происходящее на рубеже между двумя или более аттракторами в динамической системе служит своего рода отправной точкой, определяющей ход множества заурядных процессов, начиная от разрушения материалов и заканчивая принятием решений. Каждый аттрактор в такой системе, подобно реке, имеет свой «бассейн», свою «площадь водосбора», и каждый такой «бассейн» заключен в определенные границы. В начале 1980-х годов для группы наиболее влиятельных ученых самым многообещающим новым разделом математики и физики оказалось изучение границ фрактальных бассейнов.

Этот раздел динамики исследует не конечное и устойчивое поведение системы, а механизм ее «выбора» между двумя возможными вариантами. Система, подобная модели Лоренца, сейчас является классическим примером системы с одним аттрактором – одним поведением, к которому система стремится, – и этот аттрактор хаотический. Другие системы способны в конечном итоге демонстрировать нехаотическое поведение, но могут иметь более одного устойчивого состояния [301]. Исследование границ фрактальных бассейнов было исследованием систем, которые способны достигнуть одного из нескольких нехаотических конечных состояний [302]. Оно приводило к вопросу о том, как предсказать, какого именно состояния достигнет система. Джеймс Йорк, который спустя десятилетие после присвоения хаосу имени стал пионером в изучении этого феномена, предложил рассмотреть воображаемую игру в пинбол – разновидность бильярда, где вашим партнером выступает механическое устройство с поршнем, оснащенным пружиной [303]. Оттянув рукоятку поршня, мы отпускаем ее, чтобы направить шарик на игровое поле. Сконструированный под неким наклоном автомат обычно имеет резиновые бортики и электрические толкатели, которые сообщают шарику дополнительную энергию. Эти толчки весьма важны: благодаря им энергия шарика не будет просто плавно убывать. Простоты ради представим, что в нижней части воображаемого автомата нет резиновых бортовых лент, а есть только две наклонные плоскости (или лунки) для шарика, по одной из которых он и покидает поле.

Это детерминистский пинбол: автомат не испытывает вибраций и лишь один параметр обусловливает направление движения шарика – насколько сильно мы оттянули рукоятку поршня. Но предположим, автомат устроен так, что, если мы оттянули ее не сильно, шарик всегда катится в правую лунку, а если сильно – в левую. В промежуточном состоянии поведение системы становится сложным: шарик довольно долго прыгает от одного амортизатора к другому, издавая характерные шумы, прежде чем угодить в ту или другую лунку.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джеймс Глик читать все книги автора по порядку

Джеймс Глик - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Хаос. Создание новой науки отзывы


Отзывы читателей о книге Хаос. Создание новой науки, автор: Джеймс Глик. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x