Чарльз Петцольд - Код. Тайный язык информатики
- Название:Код. Тайный язык информатики
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2019
- Город:Москва
- ISBN:978-5-00117-545-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Чарльз Петцольд - Код. Тайный язык информатики краткое содержание
Код. Тайный язык информатики - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Чтобы поставить такой эксперимент, вы, как обычно, соединяете лампочку и батарейку, но используете два переключателя вместо одного.

Считается, что переключатели, подключенные друг за другом, соединены последовательно . Если вы замыкаете левый переключатель, ничего не происходит.

Если вы оставляете левый переключатель разомкнутым, а замыкаете правый, также ничего не произойдет. Лампочка загорается, когда и левый, и правый переключатели оказываются замкнутыми.

Ключевым в данном случае является союз «и». Левый и правый переключатели должны быть замкнуты, чтобы ток шел по цепи.
Эта схема решает небольшую логическую задачу. Фактически лампочка отвечает на вопрос: «Замкнуты ли оба переключателя?» Мы можем суммировать результаты работы этой схемы в следующей таблице.
Левый переключатель
Правый переключатель
Лампочка
Разомкнут
Разомкнут
Не горит
Разомкнут
Замкнут
Не горит
Замкнут
Разомкнут
Не горит
Замкнут
Замкнут
Горит
В предыдущей главе мы говорили о том, как с помощью двоичных цифр, или битов, можно представить любую информацию, начиная от чисел и заканчивая направлением большого пальца Роджера Эберта. Мы могли сказать, что ноль бит означает, что палец направлен вниз, а один бит — что палец направлен вверх. Переключатель может находиться в двух положениях, поэтому для его описания достаточно одного бита. Можно сказать, что 0 — это «переключатель разомкнут», а 1 — «переключатель замкнут». Лампочка также имеет два состояния, следовательно, для их описания достаточно одного бита. Можно сказать, что 0 — «лампочка не горит», а 1 — «лампочка горит». Теперь мы просто переписываем приведенную выше таблицу.
Левый переключатель
Правый переключатель
Лампочка
0
0
0
0
1
0
1
0
0
1
1
1
Обратите внимание: если мы поменяем местами левый и правый переключатели, результаты останутся прежними. Нам не обязательно различать переключатели. Именно поэтому таблицу можно переписать так, чтобы она напоминала приведенные И/ИЛИ.
Последовательное соединение переключателей
0
1
0
0
0
1
0
1
Действительно, это соответствует таблице с результатами выполнения булевой операции И.
Эта простая схема фактически выполняет операцию И в булевой алгебре.
Теперь попробуйте соединить два переключателя иначе.

Переключатели соединены параллельно . Разница между этим и предыдущим способом соединения заключается в том, что эта лампочка загорится, если вы замкнете верхний переключатель.

Или нижний переключатель.

Можно также замкнуть оба переключателя.

Лампочка загорается, если замкнуть верхний или нижний переключатель. Ключевым словом в данном случае является союз «или».
Опять же, данная схема решает логическую задачу. Лампочка отвечает на вопрос: «Замкнут ли хотя бы один переключатель?» В следующей таблице показаны результаты работы этой схемы.
Левый переключатель
Правый переключатель
Лампочка
Разомкнут
Разомкнут
Не горит
Разомкнут
Замкнут
Горит
Замкнут
Разомкнут
Горит
Замкнут
Замкнут
Горит
Теперь снова используем 0 для обозначения разомкнутого переключателя или негорящей лампочки и 1 — для обозначения замкнутого переключателя или горящей лампочки, в результате чего получим следующую таблицу.
Левый переключатель
Правый переключатель
Лампочка
0
0
0
0
1
1
1
0
1
1
1
1
Опять же ничего не изменится, если переключатели поменять местами, поэтому таблицу можно заполнить следующим образом.
Параллельное соединение переключателей
0
1
0
0
1
1
1
1
Вероятно, вы уже догадались, что эта таблица соответствует результатам булевой операции ИЛИ.
Значит, два соединенных параллельно переключателя выполняют операцию, эквивалентную булевой операции ИЛИ.
Явившись в зоомагазин, вы сказали продавцу: «Мне нужен стерилизованный кот белого или рыжего окраса; или стерилизованная кошка любого окраса, кроме белого; или я возьму любую из имеющихся у вас черных кошек», — и продавец составил такое выражение:
(М × С × (Б + Р)) + (Ж × С × (1 − Б)) + Ч.
Теперь, когда вы знаете, что два соединенных последовательно переключателя выполняют логическую операцию И (обозначаемую символом «×»), а два переключателя, соединенных параллельно, — логическую операцию ИЛИ (обозначаемую символом «+»), вы можете соединить восемь переключателей.

Все переключатели в этой схеме обозначены буквами, соответствующими буквам в булевом выражении. (Б¯ означает НЕ Б и является альтернативным способом записи выражения 1 − Б). Действительно, если вы просмотрите электрическую схему слева направо и сверху вниз, то столкнетесь с буквами в том же порядке, в каком они представлены в выражении. Каждый символ «×» соответствует месту схемы, где два переключателя (или две группы переключателей) соединены последовательно, каждый символ «+» — месту схемы, в котором два переключателя (или две группы переключателей) соединены параллельно.
Как вы помните, продавец сначала принес нестерилизованного рыжего кота. Замкните соответствующие переключатели.

Несмотря на то что переключатели М, Р и НЕ Б замкнуты, лампочка не загорается. Затем продавец принес стерилизованную белую кошку.
Читать дальшеИнтервал:
Закладка: