Чарльз Петцольд - Код. Тайный язык информатики
- Название:Код. Тайный язык информатики
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2019
- Город:Москва
- ISBN:978-5-00117-545-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Чарльз Петцольд - Код. Тайный язык информатики краткое содержание
Код. Тайный язык информатики - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В XVIII веке вычислителем назывался человек, нанятый специально для того, чтобы производить вычисления. Большим спросом пользовались таблицы логарифмов, а таблицы тригонометрических функций широко применялись для астрономической навигации. Если вам нужно было опубликовать новый набор таблиц, приходилось нанимать многочисленных «компьютеров», организовывать их работу, а затем систематизировать полученные данные. Разумеется, ошибки могли возникнуть на любой стадии, начиная от расчетов и заканчивая подготовкой к печати.
Стремлением избавить математические таблицы от ошибок руководствовался в своей работе Чарльз Бэббидж (1791–1871), британский математик и экономист, практически современник Сэмюэла Морзе.
В то время математические таблицы (например, логарифмов) создавались не путем вычисления фактического логарифма для каждой записи. Это заняло бы слишком много времени. Вместо этого логарифмы вычислялись для избранных чисел, а логарифмы остальных чисел можно было найти довольно просто — путем интерполяции с использованием так называемых разностей .
В начале 1820-х годов Бэббидж считал, что он в состоянии разработать и сконструировать машину для автоматизации процесса составления таблицы, вплоть до подготовки к печати. Это устранило бы ошибки. Он придумал «разностную машину», которая по сути была большим механическим сумматором. Многоразрядные десятичные числа представлялись с помощью зубчатых колес, каждое из которых могло находиться в любом из десяти положений. Отрицательные числа обрабатывались с использованием дополнений до десяти. Несмотря на то что ранние модели доказали работоспособность конструкции Бэббиджа, разностная машина так никогда и не была завершена, поскольку создавалась на гранты британского правительства, которых, разумеется, никогда не хватало. В 1833 году Бэббидж прекратил работу над ней.
Однако к этому времени у Бэббиджа возникла лучшая идея. Она заключалась в создании так называемой аналитической машины, разработка конструкции которой занимала ученого до самой смерти, причем ему удалось фактически собрать несколько небольших моделей и частей этого механизма [22].
Аналитическая машина — устройство, наиболее приближенное к компьютеру из всего, что было создано в XIX веке. Конструкция Бэббиджа предусматривала хранилище (концептуально напоминающее память компьютера) и мельницу (устройство для выполнения арифметических операций). Умножение можно было производить путем многократного сложения, а деление — путем многократного вычитания.
Самое интересное заключается в том, что аналитическую машину можно было запрограммировать с помощью карт наподобие тех, что использовались в ткацком станке Жаккара. Как выразилась Августа Ада Байрон, графиня Лавлейс (1815–1852), в примечаниях к своему переводу статьи, написанной итальянским математиком об аналитической машине Бэббиджа: «Можно сказать, что аналитическая машина плетет алгебраические узоры подобно тому, как ткацкий станок Жаккара плетет цветы и листья».
Бэббидж, кажется, был первым, кто осознал важность условных переходов в компьютерах. Снова приведем слова Ады Байрон: «Таким образом, цикл операций следует понимать как любой набор операций , выполняемый более одного раза . Цикл является циклом вне зависимости от того, повторяется он дважды или неопределенное число раз, поскольку именно факт повторения делает цикл тем, чем он является. Во многих анализируемых случаях существуют рекуррентные группы , состоящие из одного или нескольких циклов, то есть цикл цикла или цикл циклов ».
Несмотря на то что разностная машина в конечном итоге была сконструирована Георгом Шютцем и его сыном Эдвардом в 1853 году, машины Бэббиджа оставались забытыми, о них вспомнили только в 1930-х, когда люди начали исследовать основы информатики. К тому времени все, чего достиг Бэббидж, уже было превзойдено более поздними технологиями, и он мало что мог предложить компьютерному инженеру XX века, кроме значительно опережающего свое время предвидения автоматизации.
Еще одним толчком для развития информатики послужила Конституция Соединенных Штатов Америки. Помимо всего прочего, в ней содержится призыв к проведению переписи населения каждые десять лет. При проведении переписи 1880 года собиралась информация о возрасте, поле и национальности. На анализ данных ушло около семи лет.
Опасаясь того, что анализ переписи 1890 года займет больше десятилетия, Бюро переписи населения изучило возможность ее автоматизации и выбрало механизм, придуманный Германом Холлеритом (1860–1929), который работал в качестве статистика в 1880 году.
Холлерит планировал использовать картонные перфокарты размером 168,278 × 82,551 мм. Маловероятно, что Холлерит знал о том, как Чарльз Бэббидж использовал карты для программирования своей аналитической машины, однако он почти наверняка был знаком с использованием карточек в ткацком станке Жаккара. Отверстия в этих карточках были организованы в 24 столбца по 12 позиций, что в общей сложности давало 288 позиций. Эти позиции соответствовали определенным характеристикам человека, участвующего в переписи. Переписчик указывал эти особенности, пробивая прямоугольные отверстия размером в четверть дюйма в соответствующем месте карты.
Читая книгу, вероятно, вы настолько привыкли мыслить в терминах двоичных кодов, что могли предположить, что карта с 288 возможными отверстиями способна хранить 288 бит информации. Однако эти карты использовались не так.
Например, перфокарта, применяемая при переписи в чисто двоичной системе, имела бы одну позицию для пола. Она была бы либо пробита — в случае, если опрашиваемый — мужчина, либо не пробита — в случае, если это женщина (или наоборот). Однако карты Холлерита предусматривали две позиции для пола: одна пробивалась для мужчин, другая — для женщин. Аналогичным образом переписчик указывал возраст субъекта, пробивая два отверстия. Первое обозначало пятилетний диапазон: от 0 до 4, от 5 до 9, от 10 до 14 и т. д. Второе отверстие пробивалось в одной из пяти позиций для обозначения точного возраста в этом диапазоне. Для кодирования возраста требовались в общей сложности 28 позиций на карте. При использовании двоичной системы нужны были бы всего семь позиций для кодирования любого возраста от 0 до 127 лет.
Мы должны простить Холлерита за то, что он не внедрил двоичную систему для записи информации, собранной при переписи населения. Преобразование возраста в двоичные числа было непосильной задачей для тех, кто проводил перепись 1890 года. Кроме того, существует практическая причина, по которой использование перфокарт не может быть полностью основанным на двоичной системе. Двоичная система предполагает вероятность того, что будут пробиты все (или почти все) отверстия, что сделает карту чрезвычайно хрупкой.
Читать дальшеИнтервал:
Закладка: