Чарльз Петцольд - Код. Тайный язык информатики
- Название:Код. Тайный язык информатики
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2019
- Город:Москва
- ISBN:978-5-00117-545-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Чарльз Петцольд - Код. Тайный язык информатики краткое содержание
Код. Тайный язык информатики - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Данные переписи собираются так, чтобы их можно было подсчитать, то есть обобщают в таблицы . Разумеется, вы хотите знать, сколько людей живет в том или ином районе, однако также интересно получить сведения о распределении населения по возрасту. Для этого Холлерит сконструировал табулятор — машину, в которой ручное управление сочеталось с автоматизацией. Оператор прижимал к каждой перфокарте пресс с 288 подпружиненными штырями. В тех местах карточки, где были пробиты отверстия, эти штыри погружались в резервуар с ртутью, что приводило к замыканию электрической цепи, активировавшей электромагнит, который затем увеличивал на единицу значение десятичного счетчика.
Холлерит использовал электромагниты и в машине для сортировки перфокарт. Например, вам может понадобиться собрать отдельную возрастную статистику по каждой профессии. Сначала нужно сортировать карты по профессиям, затем отдельно для каждой из них собрать данные по возрастам. Сортировочная машина использовала тот же ручной пресс, что и табулятор, однако сортировщик применял электромагниты для того, чтобы открывать задвижки одного из 26 отделений. В это отделение оператор опускал карту и вручную закрывал задвижку.
Этот эксперимент по автоматизации переписи 1890 года оказался чрезвычайно успешным. В общей сложности было обработано более 62 миллионов карточек. Они содержали в два раза больше данных по сравнению с тем, что удалось собрать в ходе переписи 1880 года, а обработаны эти сведения были примерно в три раза быстрее. Холлерит и его изобретения стали известны во всем мире. В 1895 году он даже отправился в Москву и успешно продал свое оборудование для первой российской переписи 1897 года.
Герман Холлерит положил начало длинной последовательности событий. В 1896 году он основал компанию Tabulating Machine Company, занимающуюся сдачей в аренду и продажей оборудования для работы с перфокартами. К 1911 году в результате пары слияний она превратилась в Computing-Tabulating-Recording Company, или C-T-R. В 1915 году ее президентом стал Томас Джон Уотсон (1874–1956), который в 1924 году поменял название на International Business Machines Corporation, или IBM.
К 1928 году оригинальные карты, использовавшиеся в переписи 1890 года, превратились в знаменитые перфокарты IBM с 80 столбцами и 12 строками. Они продолжали активно использоваться на протяжении более 50 лет, и даже в последующие годы их иногда называли картами Холлерита . Об эволюции этих карт расскажу подробнее в главах 20, 21 и 24.
Прежде чем перенестись в двадцатое столетие, давайте убедимся, что у нас сложилось правильное представление об этой эпохе. По очевидным причинам в данной книге я уделял пристальное внимание изобретениям, которые являются цифровыми по своей природе. К ним относятся телеграф, азбука Брайля, машины Бэббиджа и карты Холлерита. При работе с цифровыми концепциями и устройствами вы легко можете подумать, что цифровым является весь мир. Однако открытия и изобретения XIX века были явно не цифровыми. Действительно, очень малая часть природного мира, который мы воспринимаем с помощью органов чувств, цифровая. Скорее, мир — это континуум, который нелегко представить с помощью чисел.
Несмотря на то что Холлерит использовал реле в своих карточных табуляторах и сортировщиках, компьютеры, созданные на основе реле, которые впоследствии стали называться электромеханическими , появились только в середине 1930-х годов. В этих машинах обычно использовались не телеграфные реле, а реле, разработанные для маршрутизации телефонных вызовов.
Эти первые релейные компьютеры не были похожи на то, что мы собирали в предыдущей главе (их конструкция основана на микропроцессорах, созданных в 1970-х). Сегодня для нас очевидно, что компьютеры должны использовать двоичные числа, однако так было не всегда.
Другое отличие нашего релейного компьютера от первых настоящих машин в том, что никто в 1930-х годах не был настолько сумасшедшим, чтобы собрать из реле память объемом 524 288 бит! Стоимость и требования к пространству и мощности делали невозможным создание такой памяти. Скудный объем доступной памяти использовался исключительно для хранения промежуточных результатов. Сами программы находились на физическом носителе, например на бумажной ленте с перфорацией. Действительно, наш процесс ввода кода и данных в память — более современная концепция.
Хронологически первый релейный компьютер, по-видимому, сконструировал Конрад Цузе (1910–1995), который в 1935 году, будучи студентом-инженером, начал собирать машину в квартире своих родителей в Берлине. Эта машина использовала двоичные числа, но в ее ранних версиях применялась механическая память, а не реле. Для программирования своих компьютеров Цузе пробивал отверстия в старой 35-миллиметровой кинопленке.
В 1937 году Джордж Стибиц (1904–1995) из Bell Telephone Laboratories принес домой пару телефонных реле и собрал на своем кухонном столе однобитный сумматор, который его жена позднее назвала «К-машиной» («К» — значит «кухня»). Этот эксперимент лег в основу компьютера Complex Number Computer, созданного в Bell Labs в 1939 году.
Между тем студент выпускного курса Гарварда Эйкен (1900–1973) искал способ выполнения множества однообразных вычислений, что привело к сотрудничеству Гарварда и IBM, в результате которого был создан автоматический вычислитель, управляемый последовательностями, впоследствии получивший имя «Марк I». Работа над этим устройством была завершена в 1943 году. Этот первый цифровой компьютер, способный печатать таблицы, наконец реализовал мечту Чарльза Бэббиджа. Компьютер «Марк II» был самой крупной релейной машиной, использующей 13 тысяч реле. В Гарвардской вычислительной лаборатории, возглавляемой Эйкеном, впервые был прочитан курс информатики.
Реле подходили для создания компьютеров, но были неидеальны. Поскольку они были механическими, их работа основывалась на изгибании металлической пластины. После продолжительной работы реле могли сломаться, а также выйти из строя из-за частичек грязи или бумаги, застрявших между контактами. Известен случай, когда в 1947 году из реле компьютера «Марк II» в Гарварде была извлечена мошка. Грейс Хоппер (1906–1992), сотрудничавшая с Эйкеном с 1944 года, а позднее ставшая известным специалистом в области языков программирования, приклеила эту мошку в журнал с пометкой: «Первый отловленный баг».
Возможная замена для реле — вакуумная лампа, разработанная Джоном Флемингом (1849–1945) и Ли де Форестом (1873–1961) для радио. К началу 1940-х годов вакуумные лампы повсеместно использовались для усиления телефонных сигналов. Практически в каждом доме был радиоприемник, наполненный светящимися трубками, которые усиливали радиосигналы, обеспечивая их слышимость. Как и в случае с реле, из вакуумных ламп можно собрать вентили И, ИЛИ, И-НЕ и ИЛИ-НЕ.
Читать дальшеИнтервал:
Закладка: