Валентин Арьков - Статистический анализ взаимосвязи в Excel

Тут можно читать онлайн Валентин Арьков - Статистический анализ взаимосвязи в Excel - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Валентин Арьков - Статистический анализ взаимосвязи в Excel краткое содержание

Статистический анализ взаимосвязи в Excel - описание и краткое содержание, автор Валентин Арьков, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Рассматриваются такие инструменты статистического анализа взаимосвязи, как корреляционный и регрессионный анализ. Техника работы в пакете Excel изучается на примере смоделированных данных. Затем полученные навыки применяются к анализу реальных данных по ценам в интернет-магазине и биржевым котировкам на Московской бирже.

Статистический анализ взаимосвязи в Excel - читать онлайн бесплатно ознакомительный отрывок

Статистический анализ взаимосвязи в Excel - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Валентин Арьков
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Величина (модуль, абсолютное значение) коэффициента характеризует ТЕСНОТУ линейной связи. Чем ближе значение к единице, тем меньше разброс, тем ближе точки к прямой линии. Чем ближе коэффициент к нулю, тем сильнее разброс вокруг прямой. Традиционное толкование величины коэффициента корреляции приводится в таблице.

Возможна и другая ситуация — НЕЛИНЕЙНАЯ зависимость, которая тоже представляет собой отсутствие линейной связи. Нелинейной зависимостью является всё, что не является линейным, например, кривая или ломаная линия. В этом случае коэффициент линейной корреляции будет близок к нулю. Но при этом точки могут быть очень тесно расположены вокруг кривой или ломаной линии. Для анализа степени нелинейной связи используют другие коэффициенты корреляции. В данной работе мы ограничимся только анализом тесноты линейной зависимости.

Как и во многих других случаях, для вычисления коэффициента корреляции в Excel имеются несколько способов:

— надстройка;

— функции;

— формулы.

В следующих разделах мы рассмотрим все эти возможности, а затем сравним полученные результаты.

Надстройка

Вызываем модуль Корреляциястатистической надстройки:

Data — Analysis — Data Analysis — Correlation

Данные — Анализ — Анализ данных — Корреляция.

Параметры корреляционного анализа

В диалоговом окне

Correlation

Корреляция

указываем следующие параметры:

Input — Input Range

Входные данные — Входной интервал.

В выбранном диапазоне ячеек должны быть два столбца значений Xи Y.

Затем указываем расположение исходных данных:

Labels in first row

Метки в первой строке.

Выделяем значения в столбцах Xи Yвместе с их заголовками. В этом случае в таблице с результатами анализа будут выводиться названия переменных.

Указываем, что наши исходные данные расположены по столбцам:

Grouped By — Columns

Группирование — по столбцам.

Обратите внимание, что здесь имеется в виду расположение данных по столбцам, а не статистическая группировка, хотя на экране и присутствует слово ГРУППИРОВАНИЕ. Как говорил Козьма Прутков: «Не верьте глазам своим». Мы пока что просто описываем исходные данные и даже не начинали заниматься группировкой.

Отмечаем первую ячейку, начиная с которой будут выводиться результаты анализа:

Output options — Output Range

Параметры вывода — Выходной интервал.

Результаты корреляционного анализа

На экран выводится таблица коэффициентов корреляции. На пересечении строки Yи столбца Хвыводится искомый коэффициент. Единичные коэффициенты на диагонали — это корреляция переменной с самóй собой.

Чтобы получить больше разрядов в дробной части, увеличим ширину столбца.

Точное значение коэффициента

Функция CORREL / КОРРЕЛ

Второй способ вычисления коэффициента корреляции — это готовая функция

CORREL (array1, array2)

КОРРЕЛ (диапазон_x; диапазон_y).

Два обязательных аргумента — это диапазоны ячеек Xи Y. Здесь «иксы» и «игреки» задаются по отдельности. Напомним, что в английской версии программы аргументы функции разделяют запятой, а в русской — точкой с запятой.

Вызов функции CORREL

Увеличиваем ширину столбца и сравниваем результаты расчётов с предыдущим разделом. Пока всё сходится.

Теперь на новом листе сгенерируйте данные с разным разбросом, то есть с разным множителем Sв уравнении. Определите значение коэффициента корреляции. Подберите величину случайного разброса, чтобы получить

0,3

0,5

0,7

1,0.

В электронной таблице формулы пересчитываются автоматически, а графики сами обновляются при изменении данных. Поэтому можно будет легко подобрать нужный разброс. Скопируйте графики и соберите их на отдельном листе с комментариями — какая корреляция и какая это теснота связи. При вставке графиков используйте режим вставки как изображение — Picture (U), а не как исходный график. В этом случае картинки не будут изменяться и обновляться.

Формулы

Вычислим коэффициент линейной корреляции вручную с помощью формул Excel.

Вот соотношение для расчётов — см. формулу.

Коэффициент корреляции

Для вычислений нам понадобятся промежуточные расчёты. Найдём суммы «иксов», «игреков», их квадратов и произведений, которые участвуют в формуле. Для этого на новом листе организуем вспомогательную таблицу. Внизу столбцов подсчитываем суммы, воспользовавшись кнопкой экспресс-анализа.

Промежуточные суммы

Когда найдены необходимые суммы, можно вычислить коэффициент корреляции. Нам потребуется функция извлечения квадратного корня:

SQRT (number)

КОРЕНЬ (число).

Формула не слишком сложная. При вводе в ячейку она легко умещается на экране. Поэтому разбивать её на части не потребуется.

Коэффициент корреляции

Сравнение результатов

Копируем полученное значение на отдельный лист для сравнения с предыдущими оценками. Записываем комментарии и сообщаем, насколько похожи оценки, полученные разными способами. А также, о чём говорят величина и знак коэффициента r — см. таблицу выше.

Регрессионный анализ

Переходим к регрессионному анализу. В статистике и бизнес-аналитике РЕГРЕССИЯ — это линия, которую проводят В СРЕДНЕМ по точкам. Кроме изображения линии на графике, здесь рассматривается уравнение этой линии. Задача регрессионного анализа — построить линию регрессии и получить уравнение регрессии.

ЛИНИЯ РЕГРЕССИИ проходит по большому количеству точек именно В СРЕДНЕМ. Она может не пройти ни через одну точку. Но на графике будет видно, как линия проходит по местам сгущения точек. Можно даже провести такую линию «на глазок», просто приложив линейку к графику.

УРАВНЕНИЕ РЕГРЕССИИ описывает нашу линию, которая проходит по точкам в среднем.

Если у нас прямая линия, а «икс» входит в уравнение в первой степени, то это ЛИНЕЙНОЕ УРАВНЕНИЕ — см. формулу.

Линейная регрессия

Для проведения регрессионного анализа в Excel имеется несколько способов:

— элемент диаграммы;

— статистическая надстройка;

— функция LINEST( ЛИНЕЙН);

— формулы с матричными операциями.

Уравнение регрессии и соответствующая линия регрессии — это пример ПАРАМЕТРИЧЕСКОЙ модели. В такой модели участвует небольшое, ограниченное количество параметров. В нашем случае несколько коэффициентов уравнения.

Существует и второй тип моделей — НЕПАРАМЕТРИЧЕСКИЕ. В таких моделях вместо красивого уравнения используется таблица с неограниченным количеством чисел или множество точек на графике. И это количество может меняться. В нашей работе мы рассмотрим пример непараметрической модели регрессии под названием УСЛОВНОЕ СРЕДНЕЕ. Мы построим эту модель с помощью методов сводки и группировки данных — этот подход подробно рассматривался в предыдущей работе.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Валентин Арьков читать все книги автора по порядку

Валентин Арьков - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Статистический анализ взаимосвязи в Excel отзывы


Отзывы читателей о книге Статистический анализ взаимосвязи в Excel, автор: Валентин Арьков. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x