Николай Чурсин - Популярная информатика

Тут можно читать онлайн Николай Чурсин - Популярная информатика - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература, издательство Техника, год 1980. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Николай Чурсин - Популярная информатика краткое содержание

Популярная информатика - описание и краткое содержание, автор Николай Чурсин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
"Информатика возникла сравнительно недавно (примерно тридцать лет назад) и по сравнению с другими науками еще совсем молода. Но несмотря на это, в настоящее время она выдвинулась в ряд важнейших областей знания. Причина ее стремительного развития состоит в том, что предмет ее исследования — научная информация, свойства и закономерности ее распространения — приобретает в современном мире исключительно важное значение." - текстовая версия.

Популярная информатика - читать онлайн бесплатно полную версию (весь текст целиком)

Популярная информатика - читать книгу онлайн бесплатно, автор Николай Чурсин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если теперь предположить, что чем больше тезаурус приемника, тем больше вероятность того, что в нем будут содержаться элементы и отношения, составляющие тезаурус сообщения, то количество информации, получаемое из сообщения, будет зависеть в итоге от величины тезауруса приемника. Зависимость свидетельствует о том, что минимальному значению величины тезауруса θ minсоответствует нулевое количество полученной из сообщения информации. Такое же (нулевое) количество информации соответствует и максимальному тезаурусу θ max. Наибольшее же количество информации J maxизвлекается приемником из сообщения при величине его тезауруса, близкой к средней.

Фактически величина тезауруса приемника измеряется относительно тезауруса источника информации. Таким образом, эффективность передачи информации зависит от соотношения тезаурусов источника и приемника.

На основании этих выводов можно объяснить, например, почему академики обычно не учат первоклассников. Если сравнить их тезаурусы, то нетрудно убедиться в том, что тезаурус академика несравненно богаче, шире и сложнее тезауруса школьника первоклассника. Это значит, что тезаурус приемника очень мал по сравнению с тезаурусом источника. Видно, что мало и количество информации, извлекаемое в этом случае. Следовательно, такое обучение неэффективно, так как первоклассники, не получая значительной информации от академика, практически ничему не научатся.

Если учителями будут школьники, а академиками — ученики, то на графике мы переместимся в точку 3 и увидим, что при приближении к этой точке значение количества воспринимаемой информации опять очень мало. И академикам, конечно, не стоит учиться у первоклассников.

Чтобы повысить эффективность обучения, иными словами, увеличить количество информации, извлекаемой приемником из сообщения, очевидно, необходимо уменьшить разницу в тезаурусах ученика и учителя (приемника и источника). Поскольку нам надо учить первоклассников, т. е. исходить из наперед заданной величины тезауруса приемника, то необходимо уменьшить тезаурус источника информации. Сделав это, мы получим тезаурус учителя младших классов, не обладающего обширными и глубокими познаниями академика, но, как оказывается, незаменимого с точки зрения эффективного обучения первоклашек. Взглянув на график снова, мы обнаружим, что тезаурус приемника в этом случае будет находиться поблизости точки 2. При этом значение I близко к максимальному.

В процессе обучения учитель передает свои знания ученикам. При этом после каждого сообщения учителя тезаурусы учеников изменяются, приближаясь к тезаурусу учителя. В этом, наверное, и состоит задача учителя. Но что мы видим на графике?

Значение θ при этом упорно ползет от точки 2 к точке 3, а вместе с этим падает и значение I . Этого может не произойти, если учитель будет постоянно расширять свой тезаурус. Тогда соотношение тезаурусов не будет изменяться. На практике, однако, так бывает редко: обычно школьник становится студентом, а значит, место учителя занимает профессор. Оптимальное соотношение тезаурусов, таким образом, восстанавливается.

Так понятие тезауруса, являющееся основой модели семантической информации, позволяет предсказать результат коммуникации, исходя даже из очень грубой оценки соотношения тезауруса ее участников.

Понятие тезауруса применимо не только к знаниям отдельного человека, но и к знаниям человечества в целом: можно говорить о тезаурусе человечества как о сумме накопленных им знаний.

Можно сравнить тезаурусы людей различных специальностей. Если отвлечься от их носителей-людей, то можно исследовать тезаурусы специальностей или тезаурусы определенных областей знания. В качестве инструмента для исследования тезауруса может использоваться вторая сигнальная система человека — его язык. В виде плоскостей схематично изображены совокупность объектов окружающего человека мира (картина реального мира), отражение этой картины мозгом человека (план содержания), выражение этого отражения при помощи языка (план выражения).

Реально существующие объекты и отношения внешнего мира A, B и C , отражаясь мозгом человека, образуют его тезаурус, располагающийся в плане содержания. Каждому элементу и отношению плана содержания соответствует понятие, выраженное при помощи слов естественного языка. Исследуя понятия и отношения между ними, мы определим соответствующий им тезаурус. Соответствие тезауруса в плане содержания тезаурусу терминов в плане выражения не следует понимать как полную идентичность. Исследовать же тезаурус терминов гораздо легче, чем понятия и отношения, зафиксированные миллиардами нервных клеток мозга человека. Представленный в виде упорядоченного словаря понятий с указанными отношениями между ними тезаурус терминов является подлинной сокровищницей, хранилищем знаний людей на определенном уровне исторического развития.

Когда информация становится знанием

Применяя модель передачи семантической информации Ю.А. Шрейдера, мы установили, что при значительной разнице тезаурусов источника и приемника информации количество информации, извлекаемое из сообщения приемником, невелико. Например, если тезаурус ученого, работающего в какой-либо области науки, значительно шире среднего тезауруса специалиста в этой области, то знакомящиеся с его работами коллеги вероятнее всего не смогут извлечь из них сколь-нибудь значительного количества информации, т. е. не поймут их.

Именно так и происходит, когда совершаются «преждевременные научные открытия»: для человеческого общества они остаются некоторое время «вещью в себе», так как общество еще не в состоянии оценить их значение. Примерно такая же ситуация возникает, когда человеку — не специалисту в какой-либо отрасли науки — предлагается прочитать очень содержательную статью в этой отрасли. Для него такая статья по существу не содержит никакой информации.

Факты из истории науки, на которые обращают внимание А.И. Михайлов, А.И. Черный, Р.С. Гиляревский, хорошо иллюстрируют сказанное. Приведем некоторые из них.

23 февраля 1826 г. в Казанском университете на заседании физико-математического факультета русский математик Н.И. Лобачевский (1792…1856) выступил с докладом, в котором изложил начала созданной им неевклидовой геометрии. Текст этого доклада, озаглавленного «Сжатое изложение основ геометрии со строгим доказательством теоремы о параллельных», был утерян рецензентами. В 1829…1830 гг. в журнале «Казанский вестник» были опубликованы мемуары Н.И. Лобачевского «О началах геометрии», в которые вошло его сочинение 1826 г. Это было одно из крупнейших достижений математической мысли во всей истории мировой науки.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Николай Чурсин читать все книги автора по порядку

Николай Чурсин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Популярная информатика отзывы


Отзывы читателей о книге Популярная информатика, автор: Николай Чурсин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x