Алексей Данилов - Популярная аэрономия
- Название:Популярная аэрономия
- Автор:
- Жанр:
- Издательство:Гидрометеоиздат
- Год:1979
- ISBN:5-286-00171-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Алексей Данилов - Популярная аэрономия краткое содержание
Книга рассчитана на специалистов в области метеорологии, физики ионосферы и распространения радиоволн, солнечно-земной физики, физики ионно-атомных столкновений, аспирантов и студентов вузов.
Популярная аэрономия - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Зондовое измерение
Так обстояло дело несколько лет назад. Высокие величины [Х+] и X были приняты многими учеными и обсуждались даже возможные процессы образовавания столь большого количества отрицательных ионов. Однако в последние годы концепция высоких λ терпит поражение. С одной стороны, все, что мы знаем о физике D-области, говорит против высоких концентраций Х- выше 70-75 км. Целый ряд косвенных оценок (например, по эффективному коэффициенту рекомбинации) показывает, что днем в невозмущенной ионосфере концентрации электронов и отрицательных ионов сравниваются (λ≈1) на высоте около 75 км. В силу довольно быстрого падения величины λ с ростом высоты это означает, что днем в спокойных условиях уже на 80 км роль отрицательных ионов мала (λ<<1).
В то же время на высоте 70 км отрицательные ионы уверенно доминируют (λ>1). Высоты 80 и 70 км обычно используют как своего рода характерные высоты в фотохимии D-области без учета отрицательных ионов (так мы делали в предыдущем параграфе) или с учетом таковых (так мы будем делать здесь и в следующем параграфе).
Пошли навстречу концепции низких X и экспериментаторы. В последние годы с помощью усовершенствованной зондовой методики стали получать более низкие величины (Х+], не дающие такого сильного различия между [Х+] и [е], а значит, и не требующие таких высоких λ.
Впрочем, относительно высокие величины λ возможны в ночное время, в сумерках и во время затмений. Поскольку в этих условиях разрушение отрицательных ионов идет медленнее, чем днем, возможно накопление Х- до более высоких, чем днем, концентраций. Так, в сумерках на высоте 80 км величина λ может быть близка к 1, а ночью и во время полной фазы солнечного затмения может составлять даже несколько единиц.
Мы видим теперь, как обстоит дело с общим количеством отрицательных ионов, т. е. с абсолютными концентрациями Х- в области D. Но кроме общего количества хорошо бы еще знать и химический состав отрицательных ионов.
Увы, дело с измерением состава отрицательных ионов обстоит плохо. Ко всем трудностям исследования ионного состава в случае положительных ионов добавляется еще то, что теперь речь идет об отрицательных ионах, а измерять концентрации тяжелых отрицательных частиц труднее, чем положительных.
Тем не менее первые масс-спектрометрические эксперименты по измерению состава отрицательных ионов были проведены, и даже не одной, а сразу двумя группами ученых - в ФРГ (Арнольд и Кранковский) и в Соединенных Штатах (Нарциси). Что же они обнаружили?
Обнаружили очень сложную картину. Гораздо более сложную, чем ожидали. Было очевидно, что в D-области должны быть ионы О2- поскольку они образуются в первичной реакции (32). Ожидали в небольшом количестве ионы О-. Можно было ожидать и появления таких ионов, как NO2-, NO3-, CO3-.Ho кто мог предсказать существование в ионосфере ионов НСО3-, 02-(Н2О)2, N02-(HN02) и т. д.! В таблице приведен список всех ионов (с указанием массового числа и вероятного химического отождествления), зарегистрированных в одном из экспериментов группы ФРГ. Как видим, коллекция более чем экзотических ионов весьма внушительная.
Состав отрицательных ионов, обнаруженных в ионосфере
Дело, однако, не только в необычности и сложности обнаруженных отрицательных ионов. Плохо то, что нет повторяемости, воспроизводимости результатов. Измерения Нарциси дают в основном другие массовые числа (а значит, и другое отождествление) сложных ионов, чем измерения Арнольда и Кранковского. Результаты обеих групп расходятся и в том, какие ионы доминируют на каких высотах. Есть различие и в высотном ходе. У Арнольда и Кранковского выше 75 - 77 км наблюдается падение концентраций отрицательных ионов, а Нарциси видит слои отрицательных ионов на высотах 88 - 92 км. Наконец, нет единства даже в вопросе о том, все ли зарегистрированные отрицательные ионы относятся к атмосфере. Например, ионы с массовыми числами 35 и 37 немецкая группа отождествляет с изотопами хлора и считает ионами атмосферного происхождения (при этом возникает очень интересная проблема - откуда этот хлор взялся на 60 - 70 км), тогда как Нарциси относит эти ионы к загрязнению ракетой.
Словом, картина пока довольно безрадостная. Нет согласия между экспериментаторами, значит, нет надежных экспериментальных данных, и мы не имеем ни достоверной картины состава отрицательных ионов, ни даже опорных точек, чтобы проверить теоретические модели Х-.
Разобравшись в том, как обстоит дело с экспериментальными данными, уместно теперь задать вопрос, а что гласит теория образования отрицательных ионов -можем ли мы что-либо добавить на основании фотохимии отрицательных ионов?
Признаемся сразу, что проблема фотохимии отрицательных ионов пока далека от своего решения. Многие реакции еще не исследованы в лаборатории. А многие даже неизвестны. Ведь в существующие сегодня схемы не включаются некоторые ионы (в основном тяжелые ионы-связки), приведенные в таблице. Но эти ионы существуют, а значит, существуют и соответствующие реакции их образования и гибели. Просто мы о них пока ничего не знаем. Тем не менее интенсивно ведутся попытки построить теоретические схемы преобразования отрицательных ионов и понять, какие из наблюдаемых экспериментальных фактов эти схемы могут объяснить.
Мы рассмотрим теперь возможности фотохимической теории отрицательных ионов. Как и в случае положительных ионов, мы опишем упрощенную схему, позволяющую наиболее острые вопросы обсудить, избегая громоздких схем со множеством реакций, требующих детальных пояснений.
В нашей схеме будут фигурировать наряду с электронами два типа отрицательных ионов: "ионы кольца" и "стабильные ионы". Эти названия были введены несколько лет назад автором по следующим причинам. Ионы первой группы очень быстро переходят друг в друга по ионно-молекулярным реакциям (например, О2- - в О3-; и в О4; О3- - в СО3-; СО- - снова в О2- и т. д.). При этом все время идут быстрые реакции прилипания и отлипания, поэтому электроны как бы движутся по кругу: от свободного состояния к иону О2-, затем О3-, затем к СОГ, затем снова к О2- и вновь к свободному состоянию. При этом указанные реакции столь эффективны, что именно они определяют время жизни (а следовательно, и концентрации) ионов кольца, а, скажем, процессы взаимной нейтрализации на их концентрации не влияют. Как показывают оценки, концентрации таких ионов, по крайней мере в дневной области D, малы - не они выступают в роли основных отрицательных ионов, однако их роль как промежуточного этапа всего ионизационно-рекомбинационного цикла процессов очень велика.
Читать дальшеИнтервал:
Закладка: