Макс Тегмарк - Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта
- Название:Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта
- Автор:
- Жанр:
- Издательство:Литагент Corpus
- Год:2019
- Город:Москва
- ISBN:978-5-17-105999-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Макс Тегмарк - Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта краткое содержание
Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Современным компьютерам удается значительно ускорить выполнение вычислений, проводя их, что называется, “параллельно”, в продолжение идеи повторного использования одних и тех же модулей: если вычисление можно разделить на части и каждую часть выполнять самостоятельно (поскольку результат одной не требуется для выполнения другой), то тогда эти части можно вычислять одновременно в разных составляющих “харда”.
Идеально воплощение параллельности достигается в квантовом компьютере . Пионер теории квантовых вычислений Дэвид Дойч утверждал в полемическом запале, что “квантовый компьютер распределяет доступную ему информацию по бесчисленному множеству копий себя самого во всем мультиверсуме” и решает благодаря этому здесь, в нашей Вселенной, любую задачу гораздо быстрее, потому что, в каком-то смысле, получает помощь от других версий самого себя {6} 6 Один из создателей теории квантовых вычислений Дэвид Дойч показывает, каким образом квантовые вычисления связаны с многомировой интерпретацией квантовой механики, в книге: David Deutsch. The fabric of reality . London: Penguin, 1997 (есть русский перевод: Дойч Д. Структура реальности. Наука параллельных вселенных. М.: Альпина нон-фикшн, 2015. – Прим. перев. ). Если вас интересует мой собственный подход к квантовым параллельным вселенным как к третьему из четырех уровней мультиверсума, то смотрите мою книгу Our Mathematical Universe (см. рус. пер.: Тегмарк М. Наша математическая Вселенная. В поисках фундаментальной природы реальности . М.: Corpus, 2016 / пер. с англ. А. Сергеев. – Прим. перев. ).
. Мы пока еще не знаем, будет ли пригодный для коммерческого использования квантовый компьютер создан в ближайшие десятилетия, поскольку это зависит и от того, действительно ли квантовая физика работает так, как мы думаем, и от нашей способности преодолеть связанные с его созданием серьезнейшие технические проблемы, но и коммерческие компании, и правительства многих стран мира вкладывают ежегодно десятки миллионов долларов в реализацию этой возможности. Хотя квантовый компьютер не поможет в разгоне заурядных вычислений, для некоторых специальных типов были созданы изобретательные алгоритмы, способные изменить скорость кардинально – в частности, это касается задач, связанных со взломом криптосистем и обучением нейронных сетей. Квантовый компьютер также способен эффективно симулировать поведение квантово-механических систем, включая атомы, молекулы и новые соединения, заменяя измерения в химических лабораториях примерно в том же ключе, в каком расчеты на обычных компьютерах заменили, сделав ненужными, измерения в аэродинамических трубах.
Что такое обучение?
Хотя даже карманный калькулятор легко обгоняет меня в состязании на быстроту в арифметических подсчетах, он никогда не улучшит своих показателей ни по быстроте вычислений, ни по их точности, сколько бы ни тренировался. Он ничему не учится, и каждый раз, когда я, например, нажимаю кнопку извлечения квадратного корня, он вычисляет одну и ту же функцию, точно повторяя одни и те же действия. Точно так же первая компьютерная программа, обыгравшая меня в шахматы, не могла учиться на своих ошибках и каждый раз просчитывала одну и ту же функцию, которую умный программист разработал, чтобы оценить, насколько хорош тот или иной следующий ход. Напротив, когда Магнус Карлсен в возрасте пяти лет проиграл свою первую игру в шахматы, он начал процесс обучения, и это принесло ему восемнадцать лет спустя титул чемпиона мира по шахматам.
Способность к обучению, как утверждается, – основная черта сильного интеллекта. Мы уже видели, как кажущийся бессмысленным фрагмент неживой материи оказывается способным запоминать и вычислять, но как он может учиться? Мы видели, что поиск ответа на сложный вопрос подразумевает вычисление некоторых функций, и определенным образом организованная материя может вычислить любую вычислимую функцию. Когда мы, люди, впервые создали карманные калькуляторы и шахматные программы, мы как-то организовали материю. И теперь, для того чтобы учиться, этой материи надо как-то, просто следуя законам физики, реорганизовывать себя , становясь все лучше и лучше в вычислении нужных функций.
Чтобы демистифицировать процесс обучения, давайте сначала рассмотрим, как очень простая физическая система может научиться вычислять последовательность цифр в числе π или любом другом числе. Выше мы видели, как холмистую поверхность с множеством ям между холмами (рис. 2.3) можно использовать в качестве запоминающего устройства: например, если координата одной из ям точно равна х = π и поблизости нет никаких других ям, то, положив шарик в точку с координатой х = 3, мы увидим, как наша система вычисляет отсутствующие знаки после запятой, просто наблюдая, как шарик скатывается в ямку. Теперь предположим, что поверхность сделана из мягкой глины, поначалу совершенно плоской как стол. Но если какие-то фанаты-математики будут класть шарики в одни и те же точки с координатами, соответствующими их любимым числам, то благодаря гравитации в этих точках постепенно образуются ямки, и со временем эту глиняную поверхность можно будет использовать, чтобы узнать, какие числа она “запомнила”. Иными словами, глина выучила, как ей вычислить значащие цифры числа π.
Другие физические системы, в том числе и мозг, могут учиться намного эффективнее, но идея остается той же. Джон Хопфилд показал, что его сеть пересекающихся нейронов, о которой шла речь выше, может учиться подобным же образом: если вы раз за разом приводите ее в одни и те же состояния, она постепенно изучит эти состояния и будет возвращаться в какое-то из них, оказавшись где-то поблизости. Вы хорошо помните членов вашей семьи, поскольку часто их видите, и их лица всплывают в вашей памяти всякий раз, как только ее подталкивает к этому что-либо связанное с ними.
Теперь благодаря нейронным сетям трансформировался не только биологический, но и искусственный интеллект, и с недавнего времени они начали доминировать в такой исследовательской области, связанной с искусственным интеллектом, как машинное обучение (изучение алгоритмов, которые улучшаются вследствие приобретения опыта). Прежде чем углубиться в то, как эти сети могут учиться, давайте сначала поймем, как они могут выполнять вычисления. Нейронная сеть – это просто группа нейронов, соприкасающихся друг с другом и потому способных оказывать взаимное влияние. Ваш мозг содержит примерно столько же нейронов, сколько звезд в нашей Галактике – порядка сотен миллиардов. В среднем каждый из этих нейронов контактирует примерно с тысячей других через переходы, называемые синапсами – именно сила этих синаптических связей, которых насчитывается примерно сотни триллионов, кодирует большую часть информации в вашем мозгу.
Читать дальшеИнтервал:
Закладка: