Макс Тегмарк - Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта

Тут можно читать онлайн Макс Тегмарк - Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Литагент Corpus, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Макс Тегмарк - Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта краткое содержание

Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта - описание и краткое содержание, автор Макс Тегмарк, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
“Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта” – увлекательная научно-популярная книга, вторая книга Макса Тегмарка, физика и космолога, профессора Массачусетского технологического института. В ней он рассматривает возможные сценарии развития событий в случае появления на Земле сверхразумного искусственного интеллекта, анализирует все плюсы и минусы и призывает специалистов объединить свои усилия в борьбе за кибербезопасность и “дружественный” искусственный интеллект.

Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта - читать онлайн бесплатно ознакомительный отрывок

Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Макс Тегмарк
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Рис 29 Сеть из нейронов может выполнять вычисления функций так же как это - фото 21

Рис. 2.9

Сеть из нейронов может выполнять вычисления функций так же, как это делает сеть из гейтов NAND. Например, сети искусственных нейронов обучились по вводимым числам, представляющим собой яркость пикселей изображения, давать на выходе числа, соответствующие вероятностям, что на этих изображениях тот или иной человек. Каждый искусственный нейрон (желтый кружок) вычисляет взвешенную сумму чисел, отправленных ему через связи (прямые линии) от нейронов предыдущего слоя, применяет простую функцию и посылает результат нейронам следующего слоя – чем дальше, тем больше вычисляется подробностей. Типичная нейронная сеть, способная распознавать лица, содержит сотни тысяч нейронов. На этом рисунке для простоты показана лишь жалкая горсточка.

Мы можем схематически изобразить нейронную сеть в виде точек, представляющих нейроны, и соединяющих их линий, которые представляют синапсы (см. рис. 2.9). Настоящие синапсы – это довольно сложные электрохимические устройства, совсем не похожие на эту схематическую иллюстрацию: они включают в себя разные части, которые называют аксонами и дендритами; есть много разновидностей нейронов, которые действуют по-разному, и точные детали того, как и когда электрическая активность в одном нейроне влияет на другие нейроны, все еще остаются предметом дальнейших исследований. Однако уже сейчас ясно, что нейронные сети могут достичь производительности человеческого уровня во многих удивительно сложных задачах, даже если на время забыть обо всех этих сложностях и заменить настоящие биологические нейроны чрезвычайно простыми имитирующими их устройствами, совершенно одинаковыми и подчиняющимися очень простым правилам. В настоящее время наиболее популярная модель такой искусственной нейронной сети представляет состояние каждого нейрона одним числом и силу каждого синапса – тоже одним числом. В этой модели при каждом действии каждый нейрон обновляет свое состояние, вычисляя среднее арифметическое от состояния всех присоединенных к нему нейронов с весами, в качестве которых берутся силы их синаптической связи. Иногда еще прибавляется константа, а к результату применяется так называемая функция активации , дающая число, которым будет выступать в качестве состояния данного нейрона на следующем такте [15] Добавим для тех, кто любит математику, что в качестве этой функции чаще всего выступает либо сигмоидальная функция σ ( x ) – 1/(1 + e – x ), либо пороговая функция σ ( x ) = max{0, x }, хотя доказано, что в этой роли можно использовать какую угодно, лишь бы она не была линейной (то есть не представлялась в виде прямой линии на графике). В знаменитой модели Хопфилда использовалась функция σ ( x ) = –1 if x < 0 and σ ( x ) = 1 if x ≥ 0. Если состояния нейронов хранятся в памяти в виде вектора, то при переходе к следующему такту он обновляется умножением сначала этого вектора на матрицу, элементами которой служат силы синаптических связей, и последующим применением функции ⌠(x) ко всем новым вычисленным элементам. . Самый простой способ использовать нейронную сеть как функцию заключается в том, чтобы сделать ее прямой, превратив в канал передачи, где информация направляется лишь в одну сторону, как показано на рис. 2.9, загружая на вход функции верхний слой нейронов и считывая выход со слоя нейронов внизу.

Успешное использование этой простой нейронной сети представляет нам еще один пример независимости от субстрата: нейронная сеть обладает колоссальной вычислительной силой, которая, вне всякого сомнения, не зависит от мелких подробностей в ее устройстве. В 1989 году Джордж Цибенко, Курт Хорник, Максвелл Стинчкомб и Халберт Уайт доказали нечто замечательное: простые нейронные сети вроде только что описанной универсальны в том смысле, что они могут вычислять любую функцию с произвольной точностью, просто приписывая соответствующие значения числам, которыми характеризуются силы синаптических связей. Другими словами, эволюция, вероятно, сделала наши биологические нейроны такими сложными не потому, что это было необходимо, а потому, что это было более эффективно, и потому, что эволюция, в отличие от инженеров-людей, не получает наград за простоту и понятность предлагаемых конструкций.

Рис 210 Вещество может производить умножение используя не гейты NAND как - фото 22

Рис. 2.10

Вещество может производить умножение, используя не гейты NAND, как на рис. 2.7, а нейроны. Для понимания ключевого момента здесь не требуется вникать в детали, достаточно только отдавать себе отчет, что нейроны (как биологические, так и искусственные) не только способны производить математические действия, но их для этого требуется значительно меньше, чем гейтов NAND. Вот еще факультативные детали для упертых фанатов математики : кружочками обозначено сложение, квадратики обозначают применение функции σ , а прямые отрезки – умножение на число, которое этот отрезок пересекает. На входе – вещественное число (слева) или бит (справа). Умножение становится сколь угодно точным при а → 0 (слева) и при с → ∞ (справа). Левая сеть работает при любой функции σ ( х ), имеющей изгиб в нуле σ ”(0) ≠ 0), что можно доказать разложением функции σ ( х ) по формуле Тейлора. Для сети справа надо, чтобы функция σ ( х ) стремилась к нулю и к единице при очень малых и очень больших х соответственно, так чтобы соблюдалось условие uvw = 1, только когда u + v + w = 3 . (Эти примеры взяты из статьи моего студента Генри Лина: https://arxiv.org/abs/1608.08225, проверена 18 мая 2018.) Комбинируя умножения и сложения, можно вычислять любые полиномы, с помощью которых, как известно, мы можем получить апроксимацию любой гладкой функции.

Впервые услышав об этом, я был озадачен: как что-то до такой степени простое может вычислить нечто произвольно сложное? Например, как вы сможете даже просто-напросто что-то перемножать, когда вам разрешено только вычислять взвешенные средние значения и применять одну фиксированную функцию? Если вам захочется проверить, как это работает, на рис. 2.10 показано, как всего пять нейронов могут перемножать два произвольных числа и как один нейрон может перемножить три бита.

Хотя вы можете доказать теоретическую возможность вычисления чего-либо произвольно большой нейронной сетью, ваше доказательство ничего не говорит о том, можно ли это сделать на практике, располагая сетью разумного размера. На самом деле, чем больше я об этом думал, тем больше меня удивляло, что нейронные сети и в самом деле так хорошо работали.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Макс Тегмарк читать все книги автора по порядку

Макс Тегмарк - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта отзывы


Отзывы читателей о книге Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта, автор: Макс Тегмарк. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x