Эндрю Макафи - Машина, платформа, толпа. Наше цифровое будущее

Тут можно читать онлайн Эндрю Макафи - Машина, платформа, толпа. Наше цифровое будущее - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Литагент МИФ без БК, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Эндрю Макафи - Машина, платформа, толпа. Наше цифровое будущее краткое содержание

Машина, платформа, толпа. Наше цифровое будущее - описание и краткое содержание, автор Эндрю Макафи, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В этой книге описывается, как в цифровую эпоху изменился баланс сил – баланс разума и машины, продуктов и платформ, ядра и толпы. По мере развития технологий расширяются и возможности человека. Понимание того, какие принципы и тренды стоят за современной цифровой революцией поможет каждому из нас проложить собственный путь в будущее. Эта книга для тех, кто интересуется технологиями, трендами, будущим. На русском языке публикуется впервые.

Машина, платформа, толпа. Наше цифровое будущее - читать онлайн бесплатно ознакомительный отрывок

Машина, платформа, толпа. Наше цифровое будущее - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Эндрю Макафи
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

• Профессор социологии Крис Снейдерс на основании информации о 5200 закупках компьютерного оборудования, сделанных голландскими компаниями, построил математическую модель, определяющую соответствие каждой сделки бюджету, своевременность поставки и удовлетворенность покупателей [104] Chris Snijders, Frits Tazelaar, and Ronald Batenburg, “Electronic Decision Support for Procurement Management: Evidence on Whether Computers Can Make Better Procurement Decisions,” Journal of Purchasing and Supply Management 9, no. 5–6 (September – November 2003): 191–98, http://www.sciencedirect.com/science/article/pii/S1478409203000463 . . Затем он использовал эту модель, чтобы предсказать результаты ряда других сделок, совершенных в нескольких различных областях, после чего попросил группу менеджеров, специализирующихся на закупках именно этих вещей, дать прогнозы о том же наборе сделок. Со своей моделью Снейдерс обошел специалистов, даже тех, что считались профессионалами. Он также обнаружил, что опытные менеджеры в прогнозах не превзошли новичков и что в целом результаты экспертов в их собственной области не выглядели лучше, чем результаты в других отраслях.

• Профессор экономики Орли Ашенфельтер построил простую модель всего на четырех общедоступных переменных, касающихся погоды, чтобы успешно предсказывать качество бордоских вин и цену на них задолго до того, как они будут готовы к употреблению. Сложилось так, что на стоимость таких молодых вин существенно влияет мнение квалифицированных экспертов, но Ашенфельтер писал, что «одним из наиболее интересных моментов [в исследованиях вроде этого] является роль, которую оно играет… Есть подтверждения, что мнение экспертов не связано с основными качествами вина… Это естественным образом приводит нас к вопросу, ответа на который у нас нет, о том, что же определяет востребованность мнения экспертов» [105] Orley Ashenfelter, “Predicting the Quality and Prices of Bordeaux Wine,” Economic Journal 118, no. 529 (June 2008): F174–84, http://onlinelibrary.wiley.com/doi/10.1111/j.1468–0297.2008.02148.x/abstract . .

• Эрик работал с Линн Ву [106] Lynn Wu and Erik Brynjolfsson, “The Future of Prediction: How Google Searches Foreshadow Housing Prices and Sales,” in Economic Analysis of the Digital Economy , ed. Avi Goldfarb, Shane M. Greenstein, and Catherine E. Tucker (Chicago: University of Chicago Press, 2015), 89– 118. (ныне профессором в Уортонской школе бизнеса) над созданием простой модели, предсказывающей объем продаж жилой недвижимости и цены на нее. Исследователи использовали данные Google Trends, в которых сообщалось, насколько часто в каждом из пятидесяти штатов США ежемесячно в поиске используют запросы вроде «агент по недвижимости», «ипотека», «цены на жилье» и тому подобное. Эрик и Ву использовали эту модель, чтобы предсказать будущие продажи жилья, и сравнивали свои прогнозы с теми, что публиковали эксперты из Национальной ассоциации риелторов. Когда появились результаты, оказалось, что модель превзошла экспертов на впечатляющие 23,6 процента. Это демонстрирует, какие возможности открывает статистика Google.

• Еще один проект Эрика был ближе к образованию; в нем разрабатывалась модель в стиле Moneyball [107] Moneyball – использование статистических данных для достижения поставленных целей с ограниченными ресурсами. Слово было использовано в названии книги Майкла Льюиса о бейсболе (см.: Льюис М. Moneyball: как математика изменила самую популярную спортивную лигу в мире. М.: Манн, Иванов и Фербер, 2013). Прим. перев. для научных кругов [108] D. Bertsimas et al., “Tenure Analytics: Models for Predicting Research Impact,” Operations Research 63, no. 6 (2015): 1246–61; and Brynjolfsson and Silberholz, “ ‘Moneyball’ for Professors?” Sloan Management Review , December 14, 2016. http://sloanreview.mit.edu/article/moneyball-for-professors . . Он работал с Димитрисом Берцимасом, Джоном Зильберхольцем и Шахаром Райхманом (все из Массачусетского технологического института). Целью эксперимента было предсказать, кого зачислят в штат крупнейших университетов. Эрик и коллеги смотрели на данные по ранним публикациям и цитированию работ молодых ученых, а также использовали некоторые понятия теории сетей, чтобы увидеть, чьи труды оказываются самыми эффективными и имеют наибольшее влияние. Модель прогнозировала, какие ученые получат должность в сфере технологических исследований. Результат на 70 процентов совпал с реальными назначениями. В остальных 30 процентах в составленных алгоритмом списках оказались люди, которые в итоге написали больше статей в ведущие научные журналы и чаще цитировались, чем те, что получили должности.

• Исследование Шая Данцигера и его коллег показало, что израильские судьи чаще предоставляют условно-досрочное освобождение в начале дня и после обеденного перерыва [109] Shai Danziger, Jonathan Levav, and Liora Avnaim-Pesso, “Extraneous Factors in Judicial Decisions,” PNAS 108, no. 17 (2010): 6889–92, http://www.pnas.org/content/108/17/6889.full.pdf . . А вот непосредственно перед обедом, когда они, вероятно, устали или у них снизился уровень сахара в крови, они чаще рекомендуют оставить заключенного в тюрьме. Другое исследование подтвердило, что на судебные решения часто влияют факторы, находящиеся за рамками рассматриваемого дела. Экономисты Озкан Эрен и Наджи Моджан выявили, что в одном штате США судьи, которые были выпускниками известного местного университета, выносили значительно более строгие приговоры сразу после того, как команда их альма-матер неожиданно проигрывала футбольный матч, и эти приговоры были необъяснимо более суровыми для чернокожих обвиняемых [110] Ozkan Eren and Naci Mocan, Emotional Judges and Unlucky Juveniles , NBER Working Paper 22611 (September 2016), http://www.nber.org/papers/w22611 . .

• В округе Броуард штата Флорида детей в программы для одаренных записывают обычно по рекомендациям родителей и учителей [111] David Card and Laura Giuliano, Can Universal Screening Increase the Representation of Low Income and Minority Students in Gifted Education? NBER Working Paper 21519 (September 2015), http://www.nber.org/papers/w21519.pdf . . При этом 56 процентов школьников в программах для одаренных – белые, хотя в Броуарде они составляют меньшинство. В первом десятилетии XXI века было принято решение отказаться от субъективного метода и попытаться применить максимально системный и объективный подход. Все дети прошли невербальный тест IQ. Экономисты Дэвид Кард и Лора Джулиано документально подтверждают поразительные результаты этой новации: среди одаренных оказалось на 80 процентов больше школьников-афроамериканцев и на 130 процентов больше испаноязычных.

• Профессора права Тед Ругер и Полин Ким совместно с политологами Эндрю Мартином и Кевином Куинном провели тест, чтобы проверить, может ли простая модель с шестью переменными предсказать решения Верховного суда США на 2002 год лучше, чем группа из восьмидесяти трех известных экспертов [112] Theodore W. Ruger et al., “The Supreme Court Forecasting Project: Legal and Political Science Approaches to Predicting Supreme Court Decisionmaking,” Columbia Law Review 104 (2004): 1150–1210, http://sites.lsa.umich.edu/admart/wp-content/uploads/sites/127/2014/08/columbia04.pdf . . Из привлеченных к эксперименту юристов 38 человек работали помощниками судей Верховного суда, 33 были профессорами права, а шестеро в настоящее время или в прошлом возглавляли юридические факультеты. В среднем представителям этой группы удалось предсказать чуть меньше 60 процентов судебных постановлений. Алгоритм же дал 75 процентов правильных результатов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эндрю Макафи читать все книги автора по порядку

Эндрю Макафи - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Машина, платформа, толпа. Наше цифровое будущее отзывы


Отзывы читателей о книге Машина, платформа, толпа. Наше цифровое будущее, автор: Эндрю Макафи. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x