Эндрю Макафи - Машина, платформа, толпа. Наше цифровое будущее

Тут можно читать онлайн Эндрю Макафи - Машина, платформа, толпа. Наше цифровое будущее - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Литагент МИФ без БК, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Эндрю Макафи - Машина, платформа, толпа. Наше цифровое будущее краткое содержание

Машина, платформа, толпа. Наше цифровое будущее - описание и краткое содержание, автор Эндрю Макафи, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В этой книге описывается, как в цифровую эпоху изменился баланс сил – баланс разума и машины, продуктов и платформ, ядра и толпы. По мере развития технологий расширяются и возможности человека. Понимание того, какие принципы и тренды стоят за современной цифровой революцией поможет каждому из нас проложить собственный путь в будущее. Эта книга для тех, кто интересуется технологиями, трендами, будущим. На русском языке публикуется впервые.

Машина, платформа, толпа. Наше цифровое будущее - читать онлайн бесплатно ознакомительный отрывок

Машина, платформа, толпа. Наше цифровое будущее - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Эндрю Макафи
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1. Информационная перегрузка – паршивая вещь, потому мы интенсивно фильтруем входящий поток… [Однако] часть отсеиваемой информации на самом деле полезна и важна.

2. Не понимая чего-нибудь до конца, мы путаемся, поэтому нам свойственно заполнять пробелы в знаниях… [Однако] в ходе этого возникают иллюзии. Иногда мы принимаем за истину додуманные нами подробности и конструируем концепции и истории, которых на самом деле не было [122] Для этого процесса есть затейливое название «апофения» (термин образован от греческого слова, которое можно перевести как «делать явным»; он означает способность человека видеть взаимосвязи, структуру и смысл в случайных данных. Прим. перев. ). Модели в статистике и машинном обучении иногда допускают ту же самую ошибку, обычно называемую переподгонкой. .

3. [Нам] нужно действовать быстро, чтобы не упустить свой шанс, так что мы всегда спешим с выводами… [Однако] это может иметь неприятные последствия. Некоторые из наших мгновенных реакций и принятых второпях решений оказываются вредными, эгоистичными и контрпродуктивными.

4. Запутавшись, мы пытаемся восстановить в уме важные детали… [Однако] память подкрепляет ошибки. Некоторые из вещей, что впоследствии мы считаем истинными, на самом деле лишь усугубляют вышеназванные проблемы, в результате чего нашим мыслительным процессам наносится больший вред [123] Buster Benson, “Cognitive Bias Cheat Sheet,” Better Humans , September 1, 2016, https://betterhumans.coach.me/cognitive-bias-cheat-sheet-55a472476b18#.qtwg334q8 . .

Мы хотим обратить внимание на еще одну серьезную проблему когнитивных способностей человека: мы не в силах точно узнать, когда Система 1 работает хорошо, а когда нет. Другими словами, у нас слабое представление о собственной интуиции. Мы не знаем, правильно наше мгновенное решение или вынесенное суждение или оно подверглось воздействию одного или нескольких искажений. В этом видится странная параллель с парадоксом Полани: мы также знаем меньше , чем способны сказать, в данном случае меньше о результатах работы Системы 1. Вычисления и рассуждения Системы 2 чаще всего можно проверить, но, как указывает Канеман, Систему 1 проверить сложнее, тем более самостоятельно.

Недавние исследования выявили один особо коварный сбой, связанный с парадоксом Полани: часто Система 1 выдает заключение, а затем просит Систему 2 объяснить его. Психолог Джонатан Хайдт утверждает: «Суждение и обоснование – это два разных процесса» [124] Jonathan Haidt, “Moral Psychology and the Law: How Intuitions Drive Reasoning, Judgment, and the Search for Evidence,” Alabama Law Review 64, no. 4 (2013): 867–80, https://www.law.ua.edu/pubs/lrarticles/Volume%2064/Issue%204/4%20Haidt%20867-880.pdf . . Вынесение суждений Системой 1 происходит почти непрерывно. Затем каждое из них подтверждается на рациональном и убедительном языке Системы 2 [125] Джонатан Хайдт в своей книге «Гипотеза счастья» (The Happiness Hypothesis) объясняет: «Тот факт, что люди с готовностью создают причины для объяснения собственного поведения, называется конфабуляцией. (Строго говоря, конфабуляцией называются любые ложные воспоминания при расстройствах памяти, когда реальные события забываются, а пробелы заполняются вымыслом. Прим. перев. ) Конфабуляция так часто встречается при работе с пациентами, перенесшими расщепление мозга, и больными, страдающими церебральными нарушениями, что [психолог Майкл] Газзанига говорит о языковых центрах в левом полушарии как о модуле-переводчике, работа которого – давать подстрочный комментарий к тому, что делает человек, хотя модуль-переводчик не имеет доступа к реальным причинам или мотивам поведения личности. Например, если для правого полушария вспыхивает слово “гулять”, пациент может встать и выйти. Если спросить, почему он поднялся, он может сказать: “Хочу взять кока-колу”. Модуль-переводчик хорошо создает такие объяснения, но не знает, что он это делает» (Jonathan Haidt, The Happiness Hypothesis: Finding Modern Truth in Ancient Wisdom (New York: Basic Books, 2006), 8). . Такая хитрость часто обманывает не только другие умы, но даже тот самый, что ее придумал. Мы часто «говорим больше, чем знаем» [126] Richard E. Nisbett and Timothy DeCamp Wilson, “Telling More Than We Can Know: Verbal Reports on Mental Processes,” Psychological Review 84, no. 3 (1977): 231–60, http://www.people.virginia.edu/~tdw/nisbett&wilson.pdf . , как заметили психологи Ричард Несбитт и Тимоти де Камп Уилсон. Характеристики поведения, которые мы называем рационализацией и самооправданием, – не всегда упражнения в отговорках. Это также нечто более фундаментальное, это Система 1 за работой.

В 2006 году Авинаш Каушик и Ронни Кохави, два специалиста по анализу данных, которые в то время работали в Intuit и Microsoft соответственно, придумали акроним HiPPO [127] Experimentation Platform, “HiPPO FAQ,” по состоянию на 26 февраля 2017 года, http://www.exp-platform.com/Pages/HiPPO_explained.aspx . для обозначения доминантного стиля принятия решений в большинстве компаний. Аббревиатура означает «мнение самого высокооплачиваемого лица» [128] Сокращение от англ. highest-paid person’s opinion – мнение самого высокооплачиваемого лица. Одновременно слово hippo означает «бегемот». Прим. перев. . Нам нравится это сокращение, и мы часто его используем, поскольку оно ярко иллюстрирует стандартное партнерство. Даже если решения принимаются не самым высокооплачиваемым работником, они часто, слишком часто бывают основаны на мнениях, суждениях, интуиции, чутье и Системе 1. Очевидно, что такой подход во многих случаях не срабатывает и что HiPPO часто наносят ущерб.

Вперед, к новому партнерству разума и машины

Как использовать все, что мы узнали о несовершенстве человеческого разума? Как эта информация может привести нас к более эффективному принятию решений? Наиболее очевидный подход – позволить машинам принимать решения в тех случаях, когда они способны это делать. Пусть компьютерные аналоги человеческой Системы 2 с их экспоненциальным прогрессом по закону Мура и огромным потоком входящих данных выдают нам ответы без применения Системы 1. Именно такой подход выбирают все больше и больше компаний.

АВТОМАТИЧЕСКАЯ «НЕВИДИМАЯ ЭКОНОМИКА»

Насколько нам известно, одним из самых ранних (он появился на заре компьютеризации корпораций) примеров полностью автоматического принятия решений была разработка кредитного рейтинга, отражающего платежеспособность людей, то есть вероятность того, что они возвратят ссуду определенного размера. Ранее это весьма важное решение традиционно принимали специалисты по кредитованию в филиалах банков, которые оценивали заявления на основе собственного опыта, иногда в сочетании с директивами или инструкциями. Однако Билл Фейр и Эрл Айзек подумали, что машины справились бы лучше. В 1956 году они основали Fair Isaac Corporation и начали вычислять кредитные рейтинги FICO.

Вскоре автоматическая оценка платежеспособности для получения кредита вошла в норму. Издание American Banker сообщало, что к 1999 году «ни один сотрудник не рассматривает просьбы о кредите на сумму в 50 тысяч долларов или меньше – все делает компьютер» [129] P. Nadler, “Weekly Adviser: Horror at Credit Scoring Is Not Just Foot-Dragging,” American Banker , no. 211 (November 2, 1999), https://www.americanbanker.com/news/weekly-adviser-horror-at-credit-scoring-is-not-just-foot-dragging . . Было подтверждено, что рейтинг FICO и его эквиваленты весьма надежно прогнозируют возврат кредита, а поскольку в последние годы увеличилось количество и разнообразие цифровой информации о людях, эти большие данные стали использоваться для улучшения и расширения кредитных рейтингов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эндрю Макафи читать все книги автора по порядку

Эндрю Макафи - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Машина, платформа, толпа. Наше цифровое будущее отзывы


Отзывы читателей о книге Машина, платформа, толпа. Наше цифровое будущее, автор: Эндрю Макафи. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x