Эндрю Макафи - Машина, платформа, толпа. Наше цифровое будущее
- Название:Машина, платформа, толпа. Наше цифровое будущее
- Автор:
- Жанр:
- Издательство:Литагент МИФ без БК
- Год:2019
- Город:Москва
- ISBN:978-5-00117-661-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эндрю Макафи - Машина, платформа, толпа. Наше цифровое будущее краткое содержание
Машина, платформа, толпа. Наше цифровое будущее - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Нам кажется, что ответ на все эти вопросы – нет. Правильные решения очень важны для нормального существования общества: они помогают делать так, чтобы нужные ресурсы (от поездок на работу до здравоохранения) попадали к нужным людям в нужном месте в нужное время. Стандартное партнерство в понимании Хаммера и Чампи, в котором компьютеры ведут документацию, а HiPPO выносят оценки и принимают решения, часто не самый лучший способ этого добиться.
Сейчас вы уже, вероятно, не особо удивитесь, если мы скажем, что люди весьма плохо предсказывают будущее. В конце концов, прогнозирование и принятие решений почти неразделимые действия. Чтобы принять хорошее решение, обычно нужен точный прогноз в отношении некоторых аспектов будущего – иначе говоря, мы должны знать, что произойдет, если мы поступим так или иначе. Соответственно, если мы плохи в чем-то одном, то, очевидно, также плохи и в другом. И правда, многие ошибки Системы 1 и ее попытки срезать углы мешают нам делать хорошие прогнозы.
В 1984 году политолог Филип Тетлок и его коллеги взялись за многолетний проект: они собирались оценить точность прогнозов во многих сферах, таких как политика, экономика и международные отношения. Результаты проведенного исследования, как и многих других, упомянутых в этой главе, поразительны и не допускают различных толкований. После проверки более 82 тысяч прогнозов Тетлок обнаружил, что по точности предсказаний «люди едва превосходят шимпанзе» [159], бросающего дротики в мишень.
Это серьезная причина для беспокойства, поскольку мир бизнеса построен на предсказаниях. Многие из них вполне конкретны, например, как поведут себя определенные акции; какими окажутся направление и величина изменений будущих кредитных ставок; сколько смартфонов удастся продать в определенной стране в следующем году. Во многих других случаях прогнозы неявно заложены в предполагаемый план действий. Так, смена дизайна сайта строится на неявном предположении, что посетителям больше понравится новый вариант, и то же самое касается смены оформления в офисах филиалов банка. Яркий запуск какого-либо продукта строится на важном предположении, что клиенты отдадут ему предпочтение, а маркетинговая кампания подразумевает прогнозирование того, как их можно сформировать.
Что такое хорошо?
Разумеется, не все прогнозы оказываются неверными. Тетлок установил, что некоторые люди – он называет их суперпрогнозистами – действительно регулярно делают предсказания, более точные, чем просто случайный выбор варианта. Они берут информацию из многих источников и, что может быть более важным, демонстрируют способность рассматривать ситуации с разных точек зрения. Менее точные прогнозисты обычно имеют одну точку зрения во всех своих анализах (и упрямые консерваторы, и фанатичные либералы чаще дают плохие политические прогнозы). Тетлок называет первую из упомянутых групп (более успешных, разносторонних аналитиков) «лисами», а вторую – «ежами». Эти термины он взял у древнегреческого поэта Архилоха: «Многое знает лиса, еж – одно, но важное» [160]. Он рекомендует везде, где только можно, опираться на лис, а не на ежей [161]. Лис легко узнать по многоаспектным и многоплановым рассуждениям и анализам. Их можно также выявить по достигнутым результатам. Люди, которые делали много точных прогнозов (причем проверяемых), с большой вероятностью являются лисами.
Если не принимать во внимание суперпрогнозистов, то лучше меньше опираться на всяческие предсказания. Наш мир становится все более сложным, часто бывает непредсказуемым, а события быстро сменяют друг друга. Это делает прогнозирование чем-то средним между чрезвычайно трудным и фактически невозможным, причем чем дальше, тем оно оказывается ближе ко второму.
В работе самых успешных компаний происходит фундаментальный сдвиг от долговременных прогнозов, многолетних планов и крупных ставок к краткосрочным циклам, экспериментам и тестированию. Эти организации следуют отличному совету компьютерного специалиста Алана Кэя: лучший способ предсказать будущее – изобрести его. Они делают это небольшими шагами, постоянно получая обратную связь и при необходимости внося изменения в свои действия, вместо того чтобы работать втайне, двигаясь к некому отдаленному событию с уверенно прогнозируемым результатом.
Не так уж сложно реализовать такой принцип для какого-нибудь онлайн-сервиса. Сайты обычно собирают много информации о действиях пользователей, что легко позволяет увидеть, произошли ли улучшения вследствие определенного изменения. Владельцы некоторых коммерческих сайтов очень подозрительно относятся к переменам и проверяют целесообразность любого шага. Туристический онлайн-сервис Priceline появился на первой волне интереса к интернету в конце 1990-х годов. Как и многие другие лидеры того времени, он рухнул в начале 2000-х, главным образом из-за того, что пользователи разочаровались в первоначальном подходе «назовите свою цену».
В середине последнего десятилетия руководство компании переосмыслило подход к бизнесу и перешло к модели с несколькими более традиционными туристическими сайтами. Однако главным фактором, позволившим Priceline добиться успеха, было постоянное экспериментирование на основе данных. Как выразился репортер VentureBeat Мэтт Маршалл, «часто к скачкообразному росту приводят маленькие идеи вроде улучшения накопленного опыта через крохотные победы – иными словами, небольшие изменения, скажем, в цветах, формулировках или расположении данных на веб-странице немного повышают активность пользователей. Компания обнаружила, что, если заменить “парковку” на “бесплатную парковку”, это даст улучшение на 2 процента, хотя текст располагается на темном фоне и едва заметен для среднего читателя» [162]. Такие выгоды обнаруживаются повсюду. Проведя строгое A/B-тестирование (обычный сетевой эксперимент, когда половина посетителей видит вариант A, а другая половина – вариант B), компания Adore Me, специализирующаяся на женском нижнем белье, обнаружила, что продажи некоторых предметов удваиваются, когда модель позирует, запустив руку в волосы, а не держа ее на бедре [163]. Вместо того чтобы тратить недели, дни и даже часы на экспертный анализ и споры о предлагаемых изменениях, обычно быстрее и точнее просто протестировать варианты в сети. Часто результаты оказываются удивительными.
Экспериментирование не ограничивается только интернетом. Продуктивным оно может быть и в реальном мире. Многие крупные компании являются тем, что профессор бизнес-школы Дэвид Гарвин называет «многоэлементными предприятиями» (МЭП) [164]. Такие организации имеют множество пунктов работы с клиентами, которые в целом выглядят и действуют одинаково. Банки, сети ресторанов, магазинов или центров оказания услуг являются МЭП. По одной оценке, 20 процентов компаний из списка Fortune 100 в той или иной степени многоэлементные предприятия.
Читать дальшеИнтервал:
Закладка: