Алексей Благирев - Big data простым языком [litres]

Тут можно читать онлайн Алексей Благирев - Big data простым языком [litres] - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Литагент АСТ, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Алексей Благирев - Big data простым языком [litres] краткое содержание

Big data простым языком [litres] - описание и краткое содержание, автор Алексей Благирев, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Наш телефон знает о нас больше, чем мы думаем. Он умеет собирать и анализировать информацию о том, как мы передвигаемся по городу, какие посты лайкаем и какими приложениями пользуемся. Он сообщит о пробках и поторопит на работу, чтобы мы не опоздали; подберет музыку под наше настроение и составит список персональных рекомендаций, чем можно занять себя в течение дня. Телефон – больше не устройство, по которому звонят, это уже средство управления окружающим нас миром. Незаметно мы окружили себя такими интерфейсами, которые создают невидимый барьер между человеком и окружающей средой. Планирование, управление, коммуникация, все теперь строится через эти программы и девайсы. Даже человеческие отношения.
Но насколько глубока кроличья нора? Каждому предстоит разобраться в этом самому. Эта книга поможет донести основные принципы проектирования и создания таких интерфейсов управления бизнесом, обществом и окружающим нас миром посредством Больших данных. Читайте, наслаждайтесь и помните: сожжение книг противозаконно.

Big data простым языком [litres] - читать онлайн бесплатно ознакомительный отрывок

Big data простым языком [litres] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Алексей Благирев
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Они используют опросы, изучают логи [133] Файлы, в которые записываются все события, происходящие в каждой системе. подключений к системам и на выходе, по результатам своей работы, они могут сказать, в каких из измерений, скорее всего, будет проблема.

Эти самые «assertions» можно смело назвать «измерениями», то есть некоторым разделением того, как я воспринимаю объект в реальном мире.

Главное, что они должны говорить пользователю – любое число или любые данные – само по себе объект многомерный.

Вот я держу книгу. В стандартной проекции у нее три оси – ширина от края разворота до середины, длина от одного края страницы до другого края страницы и толщина, то есть количество страниц. Книгу мы воспринимаем как физический объект в трех измерениях.

Так вот, информация сама по себе имеет много измерений, больше трех. И не факт, что их именно тринадцать. Чтобы управлять качеством этой информации, нужно управлять представлением этой информации в этих измерениях. Это сложный контекст, отчасти поэтому в качество данных мало инвестируют и мало этим занимаются, хотя, на мой персональный взгляд, ценность этого очевидна.

Чтобы стало проще, можно упростить количество тех самых измерений, в которых мы управляем качеством данных. Для простоты оставим только «полноту» и «точность» – то есть все, что произошло вокруг, отражено в информации и отражено корректно. Только два измерения.

Теперь вернемся к пресловутому и коварному отчету «аппетит к риску» – здесь мы должны посчитать размер потенциального искажения для двух измерений.

Как пострадает организация, если поймет, что не отражены только 95 % тех событий, которые произошли, или что сами 15 % событий отражены неточно? Возьмем то же поле «ИНН». Допустим, что поле заполнено только в 95 % случаев, а в заполненных оно некорректно в 15 % случаев. Пусть мы говорим о количестве записей 10 тысяч единиц известных нам, тогда потенциальный размер штрафа будет равен:

15 %*95 %*10 000 + (10000/95 % – 10000) = 1425 + 526 = 1951 записи могут быть некорректны.

Опустим как получили оценку 95 % или 15 %, для простоты считаем это экспертной позицией участников процесса работы с данными.

1951 умножаем на размер штрафа в пятьсот рублей, получаем 975 500 рублей – это потенциальный убыток от проблем с качеством данных одного поля «ИНН» для организации.

Как понять, какие измерения качества выбрать?

Мне нравится одно очень интересно исследование, которое провели исследователи из MIT. Оно называется « Beyond Accuracy» [134] http://mitiq.mit.edu/Documents/Publications/TDQMpub/14_Beyond_Accuracy.pdf [135] . . Для него исследователи выделили несколько групп пользователей.

В первой группе пользователей, которых они опросили, были студенты MBA.

Во второй группе пользователей, среди которых был опрос, находились уже выпускники MBA, которые проработали в компаниях достаточное количество лет.

Опросы так же отличались друг от друга. Опрос для первой группы включал в себя список возможных измерений контроля качества данных, из которого студенты должны были выбрать предпочтительный.

Напомню, что в исследованиях всегда используют один из трех различных подходов получения научного познания:

• Эмпирический – познание получаем через ощущения.

• Теоретический – осмысление опыта с точки зрения логики.

• Интуитивный – когда мы полагаемся на свой «внутренний» голос при исследовании того или иного события.

В первой группе исследователи применили теоретический подход получения нового знания – а именно списка параметров, «измерений», по которым можно контролировать качество данных.

Во второй группе исследователи применили уже интуитивный подход, чтобы понять, какие из этих параметров на самом деле наиболее важны в принятии решений и их влиянии на бизнес. В этом случае продолжительный опыт бывших выпускников MBA в компаниях являлся тем самым «внутренним фильтром», который помог определить наиболее ценные измерения из большого списка.

Исследователи сформировали список из 32 параметров контроля качества данных (32 параметра – это достаточно внушительно), и попросили сформулировать, как бы выпускники контролировали качество данных.

По итогам опроса получилось 179 уникальных параметров, которые сформулировали участники процесса, то есть в пять с половиной раз больше, чем исследователи изначально заложили в свою модель.

Модель исследователей строилась на четырех основных группах, которые объединяли эти самые параметры:

• Доступность – данные должны быть доступныдля пользователя.

• Интерпретируемость – данные должны быть способны к интерпретации. К слову, не пытайтесь использовать мандаринский диалект, если вдруг пишите комментарии в проводках и так далее.

• Релевантность – данные должны быть релевантныдля конечного пользователя, если они участвуют в процессе принятия решения.

• Точность – данные должны быть точныдля пользователя, то есть быть точными и из достоверных источников.

Во второй группе исследователи отбросили часть новых параметров и показали только 118 параметров контролирования качества данных. Опрос строился на ответах 1500 выпускников MBA, которые уже имели внушительный опыт работы.

Опустим тот факт, что опрос строился через почту, и тогда не было еще нормального работающего Интернета, обратимся лучше к его результатам.

99 из указанных параметров из основного списка оказались абсолютно не важны, когда люди с большим опытом и багажом знаний попытались интуитивно ответить на тот же самый вопрос о том, как контролировать качество данных.

Два параметра пользователи выделили как самые важные – «точность» (accuracy) и «правильность» (correct). Все самые важные параметры исследователи сгруппировали вместе в кластеры, которых получилось ровно четыре.

Рисунок SEQ Рисунок ARABIC 1 Структура концептуального фреймворка DQ на - фото 38

Рисунок SEQ Рисунок \* ARABIC 1 Структура концептуального фреймворка DQ, на основании исследования MIT Beyond Accuracy. 1993

Внутреннее качество данных– включает не только точность, но и два новых измерения – репутацию и правдоподобие. Одна лишь «точность», как оказалось, не дает пользователям уверенности в корректности данных. Им нужно доверять источникам данных.

Качество данных контекста– как оказалось, качество данных по контексту профессиональная литература по работе с данными не распознает, то есть, таких знаний просто не было. Люди не имели представления, как управлять качеством того контекста, который они получают. Единственные доступные материалы были о качестве визуального контекста – графике. Мы это подробно разобрали в главе про «Data Storytelling». Пример реализации контекстных проверок был, как ни странно, в армии Соединенных Штатов Америки во время операции « Буря в Пустыне» [136] . , где такие проверки были установлены на воздушных судах. Они анализировали для каждой задачи, выполняемой воздушным судном, широкий список параметров, используемый в планировании авиаударов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Алексей Благирев читать все книги автора по порядку

Алексей Благирев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Big data простым языком [litres] отзывы


Отзывы читателей о книге Big data простым языком [litres], автор: Алексей Благирев. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x