Сергей Парновский - Как работает Вселенная: Введение в современную космологию

Тут можно читать онлайн Сергей Парновский - Как работает Вселенная: Введение в современную космологию - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Альпина нон-фикшн, год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Сергей Парновский - Как работает Вселенная: Введение в современную космологию краткое содержание

Как работает Вселенная: Введение в современную космологию - описание и краткое содержание, автор Сергей Парновский, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.
Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Как работает Вселенная: Введение в современную космологию - читать онлайн бесплатно ознакомительный отрывок

Как работает Вселенная: Введение в современную космологию - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Сергей Парновский
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
54 Другие виды материи Тем не менее Вселенная содержит не только - фото 89

5.4. Другие виды материи

Тем не менее Вселенная содержит не только космологическую постоянную и холодную темную материю. Существует много электромагнитного излучения с параметром w = 1/3 в формуле (2.34). Его плотность зависит от красного смещения, как (1 + z)4. Таким образом, если мы путешествуем в прошлое, космологическая константа будет иметь постоянную плотность, плотность пылевой материи будет возрастать как (1 + z)3, а плотность излучения – как (1 + z)4. Плотность излучения будет превалировать в очень ранней Вселенной. При z ≈ 3200 плотности излучения и вещества были равны, затем доминировала пылевидная материя. То же самое уравнение состояния мы можем использовать для нейтрино, которые являются ультрарелятивистскими частицами с очень малой массой покоя. Их можно рассматривать как небарионную, так называемую горячую материю из-за их скоростей, близких к скорости света. Их плотность падает быстрее, чем плотность холодной материи.

Уравнения (2.12) и (2.13) легко могут быть обобщены на случай наличия некоторых других видов материи с уравнением состояния (2.33). Может ли добавление этих новых видов материи кардинально повлиять на ход эволюции Вселенной? Да, если среди них есть так называемая фантомная материя или фантомная энергия с уравнением состояния вида (2.33) с w < –1.

Действительно, если при расширении Вселенной не будет материи с возрастающей плотностью, то постоянная Хаббла будет стремиться к некоему постоянному значению. Это означает экспоненциальный рост Вселенной. Но присутствие фантомной материи все изменит. Ее плотность будет увеличиваться с течением времени. В результате мы придем к так называемому Большому разрыву: это другой вид конца света, которым закончится судьба нашей Вселенной. В этом случае скорость расширения будет неограниченно возрастать, и все тела будут разорваны на куски, затем молекулы, атомы и элементарные частицы. Мы уже говорили об этом в разделе 5.2.

Глава 6

Черные дыры и другие экзотические объекты

6.1. Черные дыры

Выполним наше обещание и расскажем о некоторых экзотических объектах, предсказанных ОТО. Они существенно менее распространены, чем темная материя или темная энергия, однако достаточно интересны, чтобы быть по крайней мере упомянутыми в этой книге.

Первый тип объектов, которые мы рассмотрим, – черные дыры, многие из которых наблюдались астрономами. Черная дыра представляет собой объект с плотностью настолько высокой, что пространственная кривизна и приливные силы в ее центре становятся бесконечными (это называется «пространственно-временная сингулярность», или просто «особенность» для краткости). Эта особенность окружена горизонтом событий – «поверхностью» черной дыры. Любой объект, включая свет, проваливается внутрь дыры через ее горизонт событий, но не может покинуть ее и должен двигаться в направлении центральной сингулярности. Именно поэтому этот объект называют черной дырой.

Причина в том, что под горизонтом событий радиальная координата становится времениподобной. Это означает, что радиальная координата тела внутри горизонта должна уменьшаться подобно тому, как временная координата любого тела вне черной дыры должна увеличиваться. Мы путешествуем вдоль времени, а падающий объект внутри черной дыры перемещается вдоль его радиальной координаты к сингулярности.

Могут ли быть схожие участки пространства, где все должно удаляться от этой центральной сингулярности? Физики рассмотрели и эту возможность и назвали такие объекты «белыми дырами». Мы обсудим их чуть позже.

Расстояние от центральной сингулярности до горизонта событий называется радиусом Шварцшильда и пропорционально массе черной дыры. Это не совсем расстояние в привычном понимании слова, ведь движение происходит по времени. Но не будем слишком придираться к словам, когда мы описываем черные дыры и их повадки. Величины радиусов Шварцшильда реально существующих черных дыр, как правило, весьма малы: если бы Солнце стало черной дырой [86] В действительности это не может произойти. Солнце просто не имеет достаточной массы, чтобы сколлапсировать. Тем более Земля с ее радиусом Шварцшильда около 9 мм. , его радиус Шварцшильда был бы около 3 км. Массы черных дыр лежат в диапазоне от нескольких солнечных масс до нескольких миллиардов солнечных масс. Принимая во внимание, что радиус черной дыры пропорционален ее массе, легко оценить радиусы этих черных дыр.

Первое решение уравнений Эйнштейна, описывающее черную дыру, появилось в 1916 г. одновременно с ОТО. Тем не менее потребовалось около двух десятилетий, чтобы понять физический смысл этого решения, а полное понимание было достигнуто в 1958 г. В течение длительного времени, пока наблюдательные средства не позволяли обнаружить черные дыры, отношение к ним среди астрономов заполняло весь спектр – от полного неприятия до попыток объявить любой непонятный объект черной дырой. Лишь в конце ХХ в. лагерь сторонников черных дыр торжествовал победу: некоторые из наиболее ярых противников были вынуждены признать существование черных дыр. Сам термин «черная дыра» впервые появился в 1964 г.

Естественно, саму черную дыру наблюдать нельзя, так как она, как следует из названия, ничего не излучает. На самом деле черные дыры излучают за счет квантовых эффектов, но температура этого излучения, открытого Стивеном Хокингом, очень мала и реально обнаружить его невозможно. Например, если бы наше Солнце стало черной дырой, то температура этого излучения составляла бы всего 10–7 К.

Черные дыры можно наблюдать более или менее непосредственно в двух случаях: либо черная дыра является частью двойной системы – в этом случае можно увидеть ее аккреционный диск (излучение от вещества, попадающего в дыру и обращающегося вокруг нее), или это сверхмассивная черная дыра, как Sagittarius A*, расположенная в самом центре нашей Галактики в созвездии Стрельца. Во втором случае мы можем увидеть собственные движения близлежащих звезд, вращающихся вокруг Sagittarius A*. На далеких расстояниях мы можем видеть черные дыры в качестве активных галактических ядер и квазаров. Недавно НАСА показало огромную концентрацию черных дыр в районе под названием Chandra Deep Field-South, сфотографированную космическим рентгеновским телескопом «Чандра» [87] http://chandra.si.edu/photo/2017/cdfs. . На участке неба размером с диск Луны находится более 5000 черных дыр.

Астрономам известны черные дыры звездных масс, с массами начиная от нескольких масс Солнца, промежуточных масс порядка сотен масс Солнца и сверхмассивные черные дыры с массами от миллиона масс Солнца. Как правило, они находятся в центрах галактик; в нашей Галактике эту роль играет Sagittarius A* с массой 4 млн масс Солнца. В окрестностях нашей Галактики самая массивная черная дыра находится в центре галактики M87; ее масса составляет 6 млрд масс Солнца. А наиболее массивная из известных черных дыр имеет массу 20 млрд масс Солнца и находится в галактике NGC 4889.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Сергей Парновский читать все книги автора по порядку

Сергей Парновский - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Как работает Вселенная: Введение в современную космологию отзывы


Отзывы читателей о книге Как работает Вселенная: Введение в современную космологию, автор: Сергей Парновский. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x