Лиза Рэндалл - Достучаться до небес: Научный взгляд на устройство Вселенной

Тут можно читать онлайн Лиза Рэндалл - Достучаться до небес: Научный взгляд на устройство Вселенной - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Альпина нон-фикшн, год 2014. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Лиза Рэндалл - Достучаться до небес: Научный взгляд на устройство Вселенной краткое содержание

Достучаться до небес: Научный взгляд на устройство Вселенной - описание и краткое содержание, автор Лиза Рэндалл, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Человечество стоит на пороге нового понимания мира и своего места во Вселенной - считает авторитетный американский ученый, профессор физики Гарвардского университета Лиза Рэндалл, и приглашает нас в увлекательное путешествие по просторам истории научных открытий. Особое место в книге отведено новейшим и самым значимым разработкам в физике элементарных частиц; обстоятельствам создания и принципам действия Большого адронного коллайдера, к которому приковано внимание всего мира; дискуссии между конкурирующими точками зрения на место человека в универсуме. Содержательный и вместе с тем доходчивый рассказ знакомит читателя со свежими научными идеями и достижениями, шаг за шагом приближающими человека к пониманию устройства мироздания.

Достучаться до небес: Научный взгляд на устройство Вселенной - читать онлайн бесплатно ознакомительный отрывок

Достучаться до небес: Научный взгляд на устройство Вселенной - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Лиза Рэндалл
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Но, когда детектор регистрирует взаимодействия из арсенала Стандартной модели, он может разобраться в них и «понять», что произошло. Именно это и должны делать обе экспериментальные установки. И CMS, и ATLAS измеряют энергию и импульс фотонов, электронов, мюонов, тау–лептонов и, наконец, частиц, участвующих в сильном взаимодействии, которые вовлекаются в потоки плотно сгруппированных частиц, летящих в одном направлении. Детекторы, установленные вокруг точки взаимодействия, должны измерять энергию или заряд и таким образом идентифицировать частицы. Чтобы не утонуть в море информации, они снабжены сложнейшими компьютеризированными устройствами, программным обеспечением и электроникой. Экспериментаторы распознают заряженные частицы, потому что те взаимодействуют с другими, известными нам заряженными частицами. Они регистрируют также все объекты, которые участвуют в сильном взаимодействии.

РИС 34 Условное изображение события в детекторе ATLAS Показан разлетающийся - фото 34

РИС. 34. Условное изображение события в детекторе ATLAS. Показан разлетающийся в поперечных направлениях дождь частиц, пронизывающих по пути слои детектора. (Обратите внимание: человек внизу помогает представить масштаб установки, но на самом деле, когда в детекторе находятся люди, столкновений не бывает.) Хорошо видны характерные тороидальные магниты. (Фото печатается с разрешения Европейского центра ядерных исследований и руководства проекта ATLAS.)

Все компоненты детектора, по существу, отслеживают перенос заряда — те электроны, что возникают при взаимодействии частиц с материалом детектора. Иногда в веществе возникает ливень частиц — множество электронов и фотонов, а иногда вещество просто ионизируется и регистрируется заряд. Но в любом случае чувствительные элементы регистрируют сигнал и посылают его в компьютеры для обработки и анализа.

Магниты также представляют собой принципиально важную часть обоих детекторов. Они необходимы для измерения как знака зарядов, так и импульсов заряженных частиц. Электрически заряженные частицы в магнитном поле отклоняются от прямой, причем радиус изгиба траектории зависит от скорости движения частицы. Чем больше импульс частицы, тем прямее она движется, а частицы с противоположными зарядами отклоняются в противоположные стороны. Частицы в БАКе обладают огромной энергией (и импульсом), поэтому экспериментальным установкам нужны очень сильные магниты, иначе не удастся заметить и измерить еле заметную кривизну треков энергичных заряженных частиц.

Установка под названием «Компактный мюонный соленоид» (Compact Muon Solenoid, CMS) — меньшая из двух главных универсальных детекторов БАКа, зато более тяжелая; ее ошеломляющая масса достигает 12 500 т. «Компактные» размеры таковы: 21 м в длину и 15 м в диаметре. Это чуть меньше, чем размеры ATLAS, и все же достаточно, чтобы полностью занять теннисный корт.

Отличительная особенность CMS — сильное магнитное поле напряженностью 4 Тл, на которое намекает слово «соленоид» в названии. Соленоид во внутренней части детектора представляет собой цилиндрическую катушку диаметром 6 м из сверхпроводящего кабеля. Ярмо магнита, проходящее через наружную часть детектора, также производит сильное впечатление — и, кстати говоря, составляет значительную часть его громадной массы. Железа в нем больше, чем в парижской Эйфелевой башне.

Обратите внимание также на слово «мюонный» в названии установки (по крайней мере, меня оно в свое время заинтересовало). Быстрое распознавание электронов и мюонов — их более тяжелых эквивалентов, проникающих в самые внешние слои детектора — может быть очень важно для обнаружения новых частиц, поскольку именно такие энергичные частицы иногда рождаются при распаде тяжелых объектов. Поскольку эти объекты не участвуют в сильном взаимодействии, они, скорее всего, представляют собой нечто новое — ведь протоны автоматически их не порождают. Таким образом, эти без труда распознаваемые частицы (мюоны) могут указывать на присутствие какой‑нибудь интересной распавшейся частицы, рожденной во время столкновения. Магнитное поле в CMS с самого начала проектировалось в расчете на энергичные мюоны, с тем чтобы установка могла их «ловить». Это означает, что детектор непременно зарегистрирует данные о любом событии с их участием, даже если вынужден будет оставить за бортом большое количество иной информации.

ATLAS (A Toroidal LHC Apparatus), как и CMS, содержит в своем названии ссылку на магниты, поскольку для его работы также необходимо сильное магнитное поле. Слово «тороидальный» в названии относится именно к магнитам. Поле, которое они создают, не такое мощное, как в CMS, зато занимает громадный объем. Именно из‑за громадных магнитных тороидов ATLAS стал более крупным из двух универсальных детекторов и вообще самой крупной экспериментальной установкой в истории человечества. Его длина 46 м, диаметр — 25 м; он удобно устроился в пещере длиной 55 и высотой 40 м. Весит детектор 7000 т и уступает CMS по массе почти вдвое.

Чтобы иметь возможность измерять все характеристики частиц, ATLAS окружает зону столкновений множеством все более крупных цилиндрических детекторных элементов. В конструкции и CMS, и ATLAS предусмотрено несколько устройств, предназначенных для измерения траекторий и зарядов пролетающих частиц. Вылетая из точки столкновения, частицы встречают на своем пути внутренние трекеры, назначение которых — точно измерить положение частицы неподалеку от точки вылета. Затем идут калориметры, измеряющие энергию, которую, останавливаясь, отдают не слишком энергичные частицы. Наконец приходит очередь мюонных детекторов, расположенных во внешнем контуре установки; они измеряют энергию мюонов, обладающих высокой проникающей способностью. Каждый из перечисленных детекторных элементов состоит из множества слоев, что увеличивает точность каждого измерения. Сейчас мы с вами совершим экскурсию по экспериментальным установкам вслед за частицами и посмотрим, как россыпь частиц, вылетающих из точки столкновения, превращается в массив легко распознаваемой информации.

ТРЕКЕРЫ

В самой глубине детектора, ближе всего к зоне взаимодействия, располагаются так называемые трекеры. Их задача — точно зафиксировать положение вылетающих из зоны заряженных частиц, чтобы затем можно было восстановить траекторию каждой частицы и измерить импульс. И в CMS, и в ATLAS трекеры включают в себя несколько концентрических компонент.

Ближайшие к пучку и зоне взаимодействия слои состоят из самых мелких сегментов и обеспечивают большую часть данных. В этом слое, который начинается в нескольких сантиметрах от протонной трубки, располагаются кремниевые пиксели с крохотными датчиками. Их задача — чрезвычайно точное фиксирование положений частиц возле самой точки взаимодействия, где плотность потока частиц максимальна. Кремний используется в современной электронике потому, что на каждом крохотном его кусочке можно вытравить множество тонких элементов, и детекторы элементарных частиц используют его по той же причине. Пиксельные элементы CMS и ATLAS способны отслеживать пролет заряженных частиц с чрезвычайно высоким разрешением. Соединяя пиксели друг с другом и с точкой взаимодействия, из которой разлетаются частицы, экспериментаторы очень точно восстанавливают траектории, по которым проходят частицы во внутренней области детектора в непосредственной близости от пучка.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Лиза Рэндалл читать все книги автора по порядку

Лиза Рэндалл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Достучаться до небес: Научный взгляд на устройство Вселенной отзывы


Отзывы читателей о книге Достучаться до небес: Научный взгляд на устройство Вселенной, автор: Лиза Рэндалл. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Людмила
6 февраля 2024 в 23:33
Уважаемая Елизавета согласна с вами когда нравится думать тогда и происходят открытия
Мысль не останавливается а цепляется одна ниточка мысли за другую Анализируя мысли других людей сопоставляя свои мысли с множеством мыслей других людей и не важно учёных со степенью или просто человека думающего приходит сформированная уже на основании мыслей всех других рождается открытие ... С уважением к вам Лиза Чудесно что вы любите думать новых открытий вам, откровений Вселенной
x