Лиза Рэндалл - Достучаться до небес: Научный взгляд на устройство Вселенной

Тут можно читать онлайн Лиза Рэндалл - Достучаться до небес: Научный взгляд на устройство Вселенной - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Альпина нон-фикшн, год 2014. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Лиза Рэндалл - Достучаться до небес: Научный взгляд на устройство Вселенной краткое содержание

Достучаться до небес: Научный взгляд на устройство Вселенной - описание и краткое содержание, автор Лиза Рэндалл, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Человечество стоит на пороге нового понимания мира и своего места во Вселенной - считает авторитетный американский ученый, профессор физики Гарвардского университета Лиза Рэндалл, и приглашает нас в увлекательное путешествие по просторам истории научных открытий. Особое место в книге отведено новейшим и самым значимым разработкам в физике элементарных частиц; обстоятельствам создания и принципам действия Большого адронного коллайдера, к которому приковано внимание всего мира; дискуссии между конкурирующими точками зрения на место человека в универсуме. Содержательный и вместе с тем доходчивый рассказ знакомит читателя со свежими научными идеями и достижениями, шаг за шагом приближающими человека к пониманию устройства мироздания.

Достучаться до небес: Научный взгляд на устройство Вселенной - читать онлайн бесплатно ознакомительный отрывок

Достучаться до небес: Научный взгляд на устройство Вселенной - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Лиза Рэндалл
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

РИС 39 Компьютерное изображение детектора ATLAS Показаны многочисленные слои - фото 39

РИС. 39. Компьютерное изображение детектора ATLAS. Показаны многочисленные слои и отдельно оконечные элементы. (Публикуется с разрешения CERN и ATLAS.)

Если нам известно, что детектор регистрирует и измеряет все поперечные импульсы — и при этом после столкновения создается впечатление, что импульс, направленный перпендикулярно пучку, не сохраняется, — это означает, что какие‑то частицы остались незамеченными и унесли с собой часть импульса. Мы уже видели, что детекторы очень точно измеряют импульс в перпендикулярной плоскости. Калориметры в передней и задней областях обеспечивают герметичность и гарантируют, что незамеченной может остаться лишь очень малая часть энергии или импульса, перпендикулярных пучку.

Установка CMS имеет в своих торцевых областях стальные поглотители и кварцевые нити, которые еще плотнее и потому лучше разделяют направления движения частиц. Латунь в оконечных элементах — вторичное сырье; прежде она применялась в российских артиллерийских снарядах. В передней части установки ATLAS используются калориметры на жидком аргоне, способные регистрировать не только электроны и фотоны, но и адроны.

МАГНИТЫ

В обоих детекторах осталось еще несколько компонентов, которых имеет смысл описать подробнее, — это магниты. Магнит — не детекторный элемент в том смысле, что непосредственно он не регистрирует никаких характеристик частиц. Однако магниты необходимы для регистрации частиц; они помогают определить импульс и заряд, без которых невозможно распознать частицы и их треки. Магнитное поле отклоняет движущиеся заряженные частицы, поэтому их треки получаются изогнутыми, а не прямыми. Насколько сильно и в каком направлении они отклоняются, зависит от энергии и заряда каждой частицы.

Громадный соленоидный магнит CMS изготовлен на основе замороженной сверхпроводящей ниобиево–титановой катушки длиной 12,5 м и диаметром 6 м. Этот магнит (самый большой в мире магнит такого типа) — главная, определяющая деталь детектора. Витки проволоки в соленоиде намотаны на металлический сердечник и при пропускании тока генерируют магнитное поле. По заключенной в нем энергии этот магнит соответствует примерно полутонне взрывчатки. Само собой разумеется, на случай сбоя и внезапной потери сверхпроводимости приняты особые меры предосторожности. В сентябре 2006 г. было проведено успешное испытание соленоида с напряженностью поля 4 Тл, но на самом деле он будет работать с полем несколько меньшей напряженности — 3,8 Тл; инженеры надеются, что это увеличит срок службы устройства.

Соленоид достаточно велик, чтобы трекеры и калориметры можно было разместить внутри него. Мюонные детекторы, с другой стороны, располагаются снаружи, вдоль внешней поверхности детектора. При этом четыре внутренних слоя мюонного детектора вплетены в громадную железную конструкцию, которая окружает магнитную катушку; эта конструкция сдерживает и направляет магнитное поле, обеспечивая его однородность и стабильность. Конструкция длиной 21 м и диаметром 14 м простирается до полного семиметрового радиуса детектора. По существу, она тоже является частью мюонной системы — ведь по идее только мюоны из всех известных заряженных частиц способны преодолеть 10 000 т железа и пройти сквозь мюонные камеры. (На самом деле энергичные адроны тоже иногда проходят сквозь все это, доставляя экспериментаторам головную боль.) Магнитное поле ярма отклоняет мюоны во внешнем детекторе. Поскольку степень отклонения мюона в магнитном поле зависит от его импульса, ярмо необходимо для измерения импульсов и энергий этих частиц. Структурно стабильный громадный магнит играет и еще одну важную роль. Он является несущей конструкцией установки и защищает ее от гигантских сил, порожденных ее собственным магнитным полем.

Магнит детектора ATLAS сконфигурирован совершенно иначе. В этом детекторе используются магниты двух разных систем: соленоид на 2 Тл, окружающий систему трекеров, и громадные тороидальные магниты во внешней части детектора, слои которых перемежаются со слоями мюонных камер. Если взглянуть на фотографию ATLAS (или на саму установку), то самыми заметными элементами окажутся восемь громадных тороидальных структур (см. рис. 34) и два дополнительных тороида, прикрывающих концы цилиндра. Генерируемое ими магнитное поле тянется на 26 м вдоль оси пучка и на 11 м от начала мюонного спектрометра в радиальном направлении.

При посещении ATLAS мне рассказывали, что в момент установки на место эти магниты были овальными (если смотреть сбоку). Инженеры учли фактор гравитации и верно рассчитали, что через некоторое время после установки тороиды под действием собственного веса станут более круглыми.

Сильное впечатление на меня произвела еще одна история. Оказывается, инженеры ATLAS учли крохотное поднятие пола тоннеля примерно на 1 мм в год за счет гидростатического давления породы, связанного с образованием в ней полости. Они рассчитали установку таким образом, чтобы это крохотное движение привело ее в оптимальное положение в 2010 г., когда намечался первый пуск коллайдера на полную мощность. Из‑за всевозможных задержек получилось не так, однако к настоящему моменту грунт под установкой перестал двигаться, и теперь она до конца эксплуатации останется в правильном положении. Несмотря на сентенцию бейсболиста и философа Йоги Берра о том, что «предсказывать трудно, особенно будущее», инженеры ATLAS сделали все верно.

РАСЧЕТЫ

Ни одно описание БАКа не может быть полным без разговора о его громадных вычислительных мощностях. Помимо замечательных технических решений, в результате которых были созданы трекеры, калориметры, мюонные системы и магниты и которые мы только что обсудили, можно говорить о том, что для обработки ошеломляющего количества данных, порождаемого многочисленными столкновениями, необходимы тщательно скоординированные и организованные вычисления, которые проводятся одновременно по всему миру.

Тот факт, что БАК работает с в 7 раз более высокими энергиями, чем тэватрон (прежний рекордсмен по энергии столкновений), — это еще не все. События в нем происходят в 50 раз чаще. БАК должен справляться с данными (по существу, с картинками очень высокого разрешения) о событиях, которые происходят с частотой примерно до миллиарда столкновений в секунду, причем «картинка» каждого события содержит около мегабайта информации.

С таким объемом данных не могла бы справиться ни одна вычислительная система. Поэтому специальные триггерные системы «на лету» принимают решения о том, какую информацию следует сохранить, а от какой можно избавиться. Разумеется, львиную долю составляют совершенно обычные столкновения протонов с участием сильного взаимодействия. Большая часть этих столкновений никому не интересна, потому что они представляют хорошо известные физические процессы и не дают ничего нового.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Лиза Рэндалл читать все книги автора по порядку

Лиза Рэндалл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Достучаться до небес: Научный взгляд на устройство Вселенной отзывы


Отзывы читателей о книге Достучаться до небес: Научный взгляд на устройство Вселенной, автор: Лиза Рэндалл. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Людмила
6 февраля 2024 в 23:33
Уважаемая Елизавета согласна с вами когда нравится думать тогда и происходят открытия
Мысль не останавливается а цепляется одна ниточка мысли за другую Анализируя мысли других людей сопоставляя свои мысли с множеством мыслей других людей и не важно учёных со степенью или просто человека думающего приходит сформированная уже на основании мыслей всех других рождается открытие ... С уважением к вам Лиза Чудесно что вы любите думать новых открытий вам, откровений Вселенной
x