Лиза Рэндалл - Достучаться до небес: Научный взгляд на устройство Вселенной

Тут можно читать онлайн Лиза Рэндалл - Достучаться до небес: Научный взгляд на устройство Вселенной - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Альпина нон-фикшн, год 2014. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Лиза Рэндалл - Достучаться до небес: Научный взгляд на устройство Вселенной краткое содержание

Достучаться до небес: Научный взгляд на устройство Вселенной - описание и краткое содержание, автор Лиза Рэндалл, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Человечество стоит на пороге нового понимания мира и своего места во Вселенной - считает авторитетный американский ученый, профессор физики Гарвардского университета Лиза Рэндалл, и приглашает нас в увлекательное путешествие по просторам истории научных открытий. Особое место в книге отведено новейшим и самым значимым разработкам в физике элементарных частиц; обстоятельствам создания и принципам действия Большого адронного коллайдера, к которому приковано внимание всего мира; дискуссии между конкурирующими точками зрения на место человека в универсуме. Содержательный и вместе с тем доходчивый рассказ знакомит читателя со свежими научными идеями и достижениями, шаг за шагом приближающими человека к пониманию устройства мироздания.

Достучаться до небес: Научный взгляд на устройство Вселенной - читать онлайн бесплатно ознакомительный отрывок

Достучаться до небес: Научный взгляд на устройство Вселенной - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Лиза Рэндалл
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Материал, использованный в калориметре ECAL детектора CMS, сам по себе удивителен и заслуживает внимания. Это кристаллический вольфрамат свинца, выбранный за свою плотность и оптическую чистоту, — именно то, что нужно для торможения и регистрирования прибывающих электронов и фотонов. Возможно, по моей фотографии на рис. 36 вы сможете себе это представить. Это поразительное вещество, невероятно прозрачное. Вы наверняка никогда не видели ничего настолько плотного и при этом настолько прозрачного. Полезны эти кристаллы еще и потому, что они способны измерять электромагнитную энергию невероятно точно, а точность, как мы узнаем в главе 16, может сыграть принципиально важную роль в поисках неуловимого бозона Хиггса.

РИС 37 Структура электромагнитного калориметра в детекторе ATLAS напоминает - фото 36

РИС. 37. Структура электромагнитного калориметра в детекторе ATLAS напоминает гармошку

РИС 36 Такие кристаллы вольфрамата свинца используются в электромагнитном - фото 37

РИС. 36. Такие кристаллы вольфрамата свинца используются в электромагнитном калориметре CMS

В экспериментальной установке ATLAS для остановки электронов и фотонов используется свинец. Взаимодействия, происходящие в этом поглотителе, переводят первоначальную энергию движущейся заряженной частицы в ливень частиц, суммарная энергия которых, собственно, и регистрируется. Затем эта энергия передается жидкому аргону — инертному газу, который не взаимодействует химически с другими элементами и очень устойчив к действию излучения. По его реакции можно судить об энергии первоначальной частицы.

Этот элемент детектора ATLAS произвел на меня сильное впечатление во время экскурсии. Фабиола принимала участие в разработке и конструировании этого калориметра с радиальными слоями свинцовых пластин, уложенных подобно мехам гармошки и разделенных тонкими слоями жидкого аргона и электродами. Она рассказала нам, что такое строение позволяет заметно ускорить процесс считывания результатов, потому что в этом случае электроника располагается намного ближе к элементам детектора (рис. 37).

АДРОННЫЙ КАЛОРИМЕТР HCAL

Следующим на пути от протонной трубки и зоны взаимодействия вдоль радиуса наружу располагается адронный калориметр HCAL. Этот прибор измеряет энергию и положение адронов — частиц, участвующих в сильном взаимодействии, —хотя и менее точно, чем электромагнитный калориметр измеряет энергию электронов и фотонов.

Снижение точности—вынужденная мера. Дело в том, что HCAL громаден. В детекторе ATLAS, к примеру, этот калориметр имеет диаметр 8 м и длину 12 м. Сегментировать HCAL с той же точностью, что и ECAL, было бы неподъемно дорого, поэтому точность трековых измерений в нем сознательно снижена. Кроме того, измерять энергию частиц, участвующих в сильном взаимодействии, попросту сложнее (вне зависимости от сегментации), потому что флуктуации энергии в адронных ливнях намного больше.

В установке CMS адронный калориметр собран из слоев материала высокой плотности — бронзы или стали, — чередующихся с пластиковыми сцинтилляторными ячейками, которые регистрируют энергию и положение пролетающих сквозь них адронов по интенсивности сцинтилляции. В центральной части детектора ATLAS в качестве материала–поглотителя используется железо, но сам адронный калориметр работает примерно так же.

МЮОННЫЙ ДЕТЕКТОР

Самый внешний слой в любом универсальном детекторе элементарных частиц составляют мюонные камеры. Мюоны, как вы помните, — это заряженные частицы, похожие на электроны, но в 200 раз тяжелее. Ни электромагнитный, ни адронный калориметры не способны их остановить. Эти частицы, не обращая ни на что внимания, летят прямиком в толстый внешний слой детектора (рис. 38).

Энергичные мюоны очень полезны в поиске новых частиц; в отличие от адронов, они достаточно изолированы, их траектории относительно легко регистрировать и измерять. Экспериментаторы хотят регистрировать все события с участием энергичных мюонов, разлетающихся в поперечном направлении, потому что самые интересные столкновения редко обходятся без их участия. Мюонные детекторы могут также оказаться полезными для регистрации любых других тяжелых и стабильных заряженных частиц, которым удастся добраться до внешних пределов детектора.

РИС 38 В CMS мюонный детектор встроен в ярмо магнита Снимок сделан в период - фото 38

РИС. 38. В CMS мюонный детектор встроен в ярмо магнита. Снимок сделан в период строительства

Мюонные камеры регистрируют следы мюонов, достигших внешнего слоя детекторов. В некоторых отношениях мюонный детектор похож на внутренний — те же трекеры и магнитные поля, которые отклоняют мюоны от прямой, чтобы можно было измерить изгиб траектории и импульс частицы. Однако магнитное поле в мюонных камерах отличается от поля во внутренних трекерах, да и сам детектор намного толще, что позволяет измерять даже очень небольшую кривизну траектории и, соответственно, регистрировать частицы с более высоким импульсом (их полет в магнитном поле меньше отклоняется от прямой). В CMS мюонные камеры занимают пространство от трех метров до внешнего радиуса детектора — примерно 7,5 м; в ATLAS они начинаются на четырех метрах и тянутся до внешних пределов детектора — до 11 м. Эти громадные конструкции позволяют измерять положение частиц с точностью до 50 мкм.

ТОРЦЕВЫЕ ЧАСТИ

Последние элементы детектора, о которых мы еще не говорили, — оконечные элементы, детекторы на переднем и заднем концах экспериментальной установки (на рис. 39 можно увидеть их примерную структуру). Теперь мы будем двигаться не по радиусу от луча наружу — последним этапом в этом направлении были мюонные детекторы, — а вдоль оси цилиндра к его концам и ограничивающим их «крышкам». Цилиндрическая часть установки «закупорена» там специальными детекторами, назначение которых—обеспечить регистрацию максимального числа частиц. Оконечные элементы устанавливались на место последними, поэтому в 2009 г. при посещении коллайдера я с такой легкостью рассматривала слоеный пирог внутреннего устройства детекторов.

Дополнительные детекторы на торцевых частях детекторного цилиндра установлены для того, чтобы экспериментаторы могли быть уверены: детектор регистрирует импульсы всех без исключения частиц. Их цель — замкнуть пространство экспериментальной установки, сделать его герметичным и не оставить нигде пропусков и неучтенных отверстий. Герметичные измерения гарантируют, что будут обнаружены даже не взаимодействовавшие или очень слабо взаимодействовавшие частицы. Если наблюдается «недостающий» поперечный импульс, это означает, что при столкновении должна была образоваться одна или несколько частиц, не вступающих в непосредственно обнаружимые взаимодействия. Подобные частицы обладают импульсом, и импульс, который они уносят с собой, сообщает экспериментаторам об их существовании.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Лиза Рэндалл читать все книги автора по порядку

Лиза Рэндалл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Достучаться до небес: Научный взгляд на устройство Вселенной отзывы


Отзывы читателей о книге Достучаться до небес: Научный взгляд на устройство Вселенной, автор: Лиза Рэндалл. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Людмила
6 февраля 2024 в 23:33
Уважаемая Елизавета согласна с вами когда нравится думать тогда и происходят открытия
Мысль не останавливается а цепляется одна ниточка мысли за другую Анализируя мысли других людей сопоставляя свои мысли с множеством мыслей других людей и не важно учёных со степенью или просто человека думающего приходит сформированная уже на основании мыслей всех других рождается открытие ... С уважением к вам Лиза Чудесно что вы любите думать новых открытий вам, откровений Вселенной
x