РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

Тут можно читать онлайн РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Альпина Паблишер, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
  • Автор:
  • Жанр:
  • Издательство:
    Альпина Паблишер
  • Год:
    2007
  • ISBN:
    ISBN 978-5-9614-0610-8
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров краткое содержание

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - описание и краткое содержание, автор РАЛЬФ РАЛЬФ ВИНС, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать онлайн бесплатно ознакомительный отрывок

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать книгу онлайн бесплатно (ознакомительный отрывок), автор РАЛЬФ РАЛЬФ ВИНС
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вы увидите, что мы всегда будем продумывать стратегию, исходя из сценария худшего случая. Мы всегда будем включать его в математический метод, чтобы просчитать ситуации, которые предполагают осуществление худшего случая.

Наконец, необходимо учитывать следующую аксиому. Если вы играете в игру с неограниченной ответственностью, то обанкротитесь с вероятностью, которая приближается к уверенности, когда длина игры приближается к бесконечности. Не очень приятная перспектива, не правда ли? Поясним сказанное на примере: если вы можете умереть от удара молнией, то в конце концов это произойдет. Если вы торгуете инструментом с неограниченной ответственностью (таким, как фьючер­сы), то в итоге понесете убыток такой величины, что потеряете все. Вероятность того, что вас поразит молния именно сегодня, чрезвычайно мала, И чрезвычайно мала для вас в течение следующих пятидесяти лет. Однако эта ве­роятность существует, и если вам суждено прожить достаточно долго, то в конце ' концов эта микроскопическая вероятность реализуется. Таким же образом веро­ятность понести огромный убыток по позиции сегодня может быть чрезвычайно мала (но намного больше, чем умереть сегодня от молнии). Однако если вы торгу­ете достаточно долго, то в конце концов эта вероятность также будет реализована. Существуют три подхода, которые вы можете использовать. Первый — это торговать только теми инструментами, где ответственность ограничена (напри­мер, длинная позиция по опционам). Второй — не торговать бесконечно долгий период времени. Большинство трейдеров умрут прежде, чем разорятся (или прежде, чем их поразит молния). Вероятность огромного выигрыша также суще­ствует, и одна из приятных сторон торговли заключается в том, что вам не обяза­тельно сразу получить гигантский выигрыш, достаточно многих маленьких по­бед. Поэтому если вы не собираетесь торговать финансовыми инструментами с ограниченной ответственностью и не собираетесь умирать, то пообещайте себе, что прекратите торговлю, когда баланс вашего счета достигнет некоторой заранее установленной цели. Если когда-нибудь вы достигнете этой цели, уходите с рын­ка и никогда не возвращайтесь. Мы рассматривали сценарии худшего случая и то, как избежать или, по крайней мере, уменьшить вероятность его появления. Представьте, что се­годня вы получили-таки огромный проигрыш, ваш счет опустошен, брокерс­кая фирма хочет знать, что вы будете делать с этим большим дебетом на счете. Вы не ожидали, что это произойдет сегодня. Те, кто попадает в такую ситуа­цию, чаще всего не готовы к ней. Теперь попытайтесь представить, как бы вы себя чувствовали в такой ситу­ации. Затем попытайтесь понять, что бы вы сделали в этом случае. Запишите на листок бумаги план ваших действий: кому позвонить, чтобы получить юри­дическую помощь, и так далее. Сделайте список настолько подробным, на­сколько возможно. Сделайте все сейчас, чтобы, когда худшее произойдет, вам не пришлось к этому возвращаться. Есть ли какие-то вопросы, которые вы можете решить сейчас, чтобы защитить себя до возможного ужасающего убыт­ка? Вы уверены, что не хотите торговать инструментом с ограниченной ответственностью? Если вы собираетесь торговать средством с неограниченной от­ветственностью, на каком заработке вы остановитесь? Запишите, какой уровень прибыли вам подходит. Не читайте пока книгу, закройте ее и некоторое время подумайте над этими вопросами. Именно с этой точки мы и двинемся дальше. Задача книги состоит не в том, чтобы сделать вас фаталистом. Это будет анти­продуктивно, так как для эффективной торговли на рынках с вашей стороны по­требуется большой оптимизм, чтобы пройти через все неизбежные затяжные пе­риоды убытков. Цель книги — заставить вас задуматься о сценарии худшего слу­чая и заранее продумать план действий на тот случай, если такой сценарий произойдет. Теперь возьмите листок бумаги с вашим планом на крайний случай (и с суммой счета, при которой вы перестанете торговать) и положите его в верхний ящик стола. Теперь, если начнет вырисовываться сценарий худшего случая, вам не придется прыгать из окна. Надейтесь на лучшее, но готовьтесь к худшему. Если вы не сделали эти приготовления, тогда закройте эту книгу и не открывайте ее. Ничто не помо­жет вам, если вы не создадите себе фундамент, на который будете опираться.

Система математических обозначений

Так как эта книга полна математических уравнений, я попытался сделать ма­тематические обозначения легкими для понимания, причем настолько лег­кими, чтобы их можно было взять из текста и перенести на экран компьюте­ра. Умножение всегда будет обозначаться звездочкой (*), а возведение в сте­пень будет обозначаться поднятым знаком вставки (^). Поэтому квадратный корень числа будет обозначаться так: ^(1/2). Вы никогда не встретите знак корня. Деление в большинстве случаев выражено черточкой (/). При исполь­зовании знака корня и средства выражения деления с помощью горизонталь­ной линии длинные подкоренные выражения, а также выражения в числите­ле и знаменателе дроби, часто не берутся в скобки. При переводе такого вы­ражения в компьютерный код может возникнуть путаница, мы избежим ее с помощью этих условных обозначений для деления и возведения в степень. Скобки будут единственным оператором группировки, и они могут быть ис­пользованы для ясности выражения, даже если в них математически нет необхо­димости. В качестве оператора группировки также могут использоваться фигур­ные скобки. Большинство математических функций, используемых в книге, довольно про­сты (например, функция абсолютного значения и функция натурального лога­рифма). Есть одна функция, которая может быть знакома не всем читателям, — это экспоненциальная функция, обозначаемая в книге ЕХР(). Математически она чаще выражается как постоянная е, равная 2,7182818285, возведенная в сте­пень. Таким образом:

ЕХР(Х) = е ^ Х = 2,7182818285 ^Х

Мы будем использовать обозначение ЕХР(Х), поскольку в большинстве компью­терных языков в той или иной форме есть эта функция. Так как большая часть ма­тематики книги может быть перенесена в компьютер, предложенная система обо­значений оптимальна.

Синтетические конструкции в этой книге

Когда вы будете читать книгу, то увидите, что в ней достаточно много геометрии. Однако для того, чтобы добраться до этой геометрии, нам придется создать опре­деленные синтетические конструкции. Для начала мы переведем торговые при­были и убытки в «прибыль за период удержания позиции» (holding period returns), или, вкратце, HPR. Таким образом, сделке, которая принесла 10% прибыли, соответствует HPR = 1 + 0,10 = 1,10. Аналогично, сделке, по которой полу­чился убыток 10%, соответствует HPR = 1 + (-0,10) = 0,90. В большинстве книг при ссылке на прибыль за период удержания позиции единица не прибавля­ется к проценту выигрыша или проигрыша. Однако в этой книге, когда упомина­ется HPR, мы всегда прибавляем единицу к проценту проигрыша или выигрыша.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


РАЛЬФ РАЛЬФ ВИНС читать все книги автора по порядку

РАЛЬФ РАЛЬФ ВИНС - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров отзывы


Отзывы читателей о книге Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров, автор: РАЛЬФ РАЛЬФ ВИНС. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x