Кит Йейтс - Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь

Тут можно читать онлайн Кит Йейтс - Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    2019
  • ISBN:
    978-5-04-161431-7
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Кит Йейтс - Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь краткое содержание

Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь - описание и краткое содержание, автор Кит Йейтс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Многие из нас боятся математики и не любят ее. Можно сказать даже, ненавидят. А зря.
Математические истории Кита Йейтса наглядно демонстрируют, как математика наполняет нашу жизнь и управляет ею.
Каждая из глав посвящена одному математическому принципу, например теории вероятности, и демонстрирует, как эта концепция реализуется в повседневной жизни.
Вы узнаете о несправедливых судебных решениях, основанных на математических ошибках; о тянущихся последствиях катастрофы в Чернобыле; о том, как манипулируют статистикой и предотвращают эпидемии. И все это благодаря королеве наук.
Доступность подачи материала, отсутствие сложных математических формул, наглядная демонстрация важности математики в нашей жизни – вот главные принципы книги.

Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь - читать онлайн бесплатно ознакомительный отрывок

Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Кит Йейтс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Например, в поисках кратчайшего пути от дома до кинотеатра алгоритм Дейкстры выстраивает маршрут в обратном направлении – от кинотеатра. Если известно кратчайшее расстояние от дома до всех перекрестков, соединенных с кинотеатром одним отрезком дороги, то работа существенно упрощается. Мы можем просто рассчитать кратчайший путь до кинотеатра, добавляя к длине дорог, соединяющих кинотеатр с ближайшими к нему перекрестками, длину путей от дома до этих перекрестков. Конечно, в начале процесса расстояния от дома до ближайших к кинотеатру перекрестков неизвестны. Однако, использовав ту же процедуру снова, мы можем найти кратчайшие пути до этих предпоследних перекрестков, используя кратчайшие пути от дома до тех перекрестков, которые с ними соединяются. Применяя эту логику рекурсивно, перекресток за перекрестком, мы возвращаемся дому, откуда и начинаем путешествие. Поиск кратчайшего маршрута через дорожную сеть, который просто требует от нас неоднократно делать правильный локальный выбор, – жадный алгоритм. Чтобы реконструировать маршрут, мы просто отслеживаем развязки, через которые нам пришлось пройти, чтобы найти это кратчайшее расстояние. Когда вы ищете через Google Maps наилучший маршрут до кинотеатра, в недрах программы обработку данных начинает, скорее всего, какая-то из вариаций алгоритма Дейкстры.

Когда вы, добравшись до кинотеатра, намереваетесь оплатить парковку, в билетном автомате вполне может не оказаться сдачи. Если у вас достаточно монет, то вы, скорее всего, захотите, как можно быстрее набрать точную сумму. Жадный алгоритм, который в такой ситуации многие используют интуитивно, состоит в том, чтобы вставлять в прорезь монету наивысшего достоинства, но меньше оставшейся к оплате суммы.

Большинство денежных систем – в Великобритании, Австралии, Новой Зеландии, ЮАР, Европе и т. д. – имеют структуру 1–2–5, при этом достоинства монет или банкнот в этой структуре увеличиваются кратно деноминации. В Великобритании, например, в обращении 1-, 2– и 5-пенсовые монеты. Далее следуют монеты достоинством 10, 20 и 50 пенсов, затем монеты в 1 фунт и 2 фунта стерлингов, за которыми следуют 5-, 10-, 20– и, наконец, 50-фунтовые банкноты. Таким образом, чтобы в рамках этой системы набрать 58 пенсов мелочью с помощью жадного алгоритма, нужно взять 50-пенсовик, оставив 8 пенсов до требуемой суммы; 20 и 10 пенсов уже превысят нужную величину, поэтому добавляем 5 пенсов, затем 2 пенса и наконец пенни. Получается, что во всех валютных системах такого типа, включая американскую, исполнение описанного выше жадного алгоритма позволяет набрать нужную сумму из наименьшего количества монет.

Но вовсе не обязательно, что этот алгоритм будет работать в любой валютной системе. Если бы вдруг существовала еще и 4-пенсовая монета, то последние 8 пенсов из 58 можно было бы набрать всего двумя 4-пенсовыми монетами вместо монет по 5, 2 и 1 пенсу. Любая валюта, для которой каждая монета или банкнота по крайней мере в два раза дороже, чем предыдущая по номиналу, удовлетворяет условиям жадного алгоритма. Это объясняет преобладание структуры «1–2–5» – соотношения 2 или 2,5 между номиналами гарантируют, что жадный алгоритм будет работать, а простая десятеричная система сохраняется. Поскольку мелочь требуется практически повсеместно, почти все валюты мира организованы таким образом, чтобы удовлетворять условиям жадного алгоритма – за исключением Таджикистана, где в обращении ходят монеты достоинством в 5, 10, 20, 25 и 50 дирамов. 40 дирамов проще набрать двумя монетами по 20, чем монетами по 25, 10 и 5 дирамов, что предлагает жадный алгоритм.

Кстати, о жадности: вы когда-нибудь пробовали заказать 43 макнаггетса в «Макдоналдсе»? Как ни странно, эти жареные во фритюре панированные кусочки курицы породили интересную математику. В Великобритании макнаггетсы первоначально подавали в коробках по 6, 9 или 20 штук. Обедая с сыном в «Макдоналдсе», математик Анри Пиччотто решил подсчитать, сколько наггетсов он не сможет заказать одномоментно, используя комбинации из трех коробок. Ответом стал числовой ряд 1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 22, 23, 25, 28, 31, 34, 37 и 43. Все остальные «наборы» наггетсов составить было можно; эти числа с того дня стали известны как числа Макнаггетса. Самое большое число, которое нельзя получить, комбинируя с кратными величинами заданного набора чисел, называется числом Фробениуса. Числом Фробениуса для куриных макнаггетсов, таким образом, было 43. К сожалению, когда «Макдоналдс» добавил в ассортимент упаковки по 4 наггетса, число Фробениуса упало до 11. Забавно, что даже с добавлением этой новой коробки, жадный алгоритм не позволит набрать 43 наггетса (две порции по 20 дадут сразу 40, а порции из 3 наггетсов нет), так что получить на заказ 43 наггетса в «Макавто» сегодня все еще непросто – хотя набрать это количество и возможно.

Высокоразвитые

Жадные алгоритмы – когда они работают – предлагают высокоэффективные методы решения проблем. Однако когда они не работают, они оказываются не просто бесполезны, но и вредны. Намереваясь отправиться на лоно природы и взобраться на самую высокую вершину, чтобы подышать свежим горным воздухом, очутиться на верхушке кротовой кучи на своем заднем дворе из-за того, что вы воспользовались негибким жадным алгоритмом, будет не очень-то приятно. Такой результат оптимальным не назовешь. К счастью, существует ряд алгоритмов, вдохновленных самой природой, которые помогают нам преодолевать как образные, так и настоящие препоны.

Одна из процедур, известная как муравьиный алгоритм, посылает армии компьютерных «муравьев» для исследования виртуальной среды, отражающей реальную проблему. Так, при решении задачи коммивояжера муравьи снуют между близлежащими пунктами назначения, отражая способность настоящих муравьев воспринимать лишь ближайшее для них окружение. Если муравьи находят короткий маршрут по всем точкам, то они метят его феромонами, чтобы направить по нему других муравьев. Более востребованные и, соответственно, более короткие маршруты привлекают больше муравьиного трафика. Как и в реальном мире, выделенный феромон испаряется, позволяя муравьям гибко менять оптимальную маршрутизацию при изменении пунктов назначения. Муравьиный алгоритм используется для поиска эффективных решений проблем NP-группы – таких как проблема маршрутизации транспортных потоков, – а также для моделирования сложнейших биологических процессов, включая особенности формирования многокомпонентных трехмерных белковых структур из простых одномерных цепочек аминокислот.

Муравьиный алгоритм – всего лишь один из целого семейства так называемых алгоритмов роевого интеллекта, вдохновленных природой. Стаи скворцов или косяки рыб способны очень резко – и при этом согласованно и синхронно – менять направление движения, несмотря на то что каждая особь может коммуницировать лишь с небольшим числом особей по соседству. Информация о появлении хищника неподалеку от одного края косяка рыбы, например, быстро распространяется на другой его край. Заимствуя эти принципы локального взаимодействия, разработчики алгоритмов могут использовать огромные «стаи» исполнительных устройств, объединенных в информационную сеть, для исследования окружающей среды. Их быстрое, «роевое» взаимодействие позволяет им узнавать об открытиях, сделанных другими участниками «роя» в поисках оптимального окружения.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Кит Йейтс читать все книги автора по порядку

Кит Йейтс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь отзывы


Отзывы читателей о книге Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь, автор: Кит Йейтс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x