Дэниел Клемент Деннет - Разум: от начала до конца. Новый взгляд на эволюцию сознания от ведущего мыслителя современности
- Название:Разум: от начала до конца. Новый взгляд на эволюцию сознания от ведущего мыслителя современности
- Автор:
- Жанр:
- Издательство:Литагент 5 редакция «БОМБОРА» (БЕЗ ПОДПИСКИ)
- Год:2021
- Город:М.
- ISBN:978-5-04-157344-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дэниел Клемент Деннет - Разум: от начала до конца. Новый взгляд на эволюцию сознания от ведущего мыслителя современности краткое содержание
В своей новой книге «Разум: от начала до конца» выдающийся философ Дэниел К. Деннет, опираясь на открытия современной науки, шаг за шагом исследует возникновение и развитие разума. Мировой бестселлер, получивший мировое признание, будет особенно интересен новому поколению философов и ученых.
Разум: от начала до конца. Новый взгляд на эволюцию сознания от ведущего мыслителя современности - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В мире программирования существуют два известных явления – серендипити [48] Серендипити – термин, происходящий из английского языка и обозначающий способность делать неожиданные ненамеренные открытия, анализируя случайные явления. Термин восходит к притче «Три принца из Серендипа», входившей в состав древнеперсидского эпоса и рассказывающей о чудесах интуиции.
и противоположный ему клобберинг . Серендипити представляет собой случайную коллизию двух несвязанных между собой процессов, приводящую к удачному результату, а клобберинг – обратное явление, когда случайная коллизия приводит к разрушению. Программисты устанавливают специальные формы защиты от клобберинга, что позволяет сделать процессы устойчивыми и защитить вычислительные циклы от интерференции. Точно так же и для ненарушенного протекания различных химических циклов необходимы некие перегородки или мембраны (например, для цикла Кребса [49] Цикл Креббса – циклический биохимический процесс, в ходе которого ацетильные остатки (СН3СО-) окисляются до диоксида углерода (CO 2 ), один из важнейших процессов дыхания всех клеток, использующих кислород, центр пересечения множества метаболических путей в организме.
и тысяч других реакций), и их появление тоже могло способствовать возникновению жизни. (Прекрасный образец подобного взгляда на химические циклы в живых клетках как совокупность алгоритмов дана в книге Dennis Bray, Wetware, 2009 [50] Wetware: A Computer in Every Living Cell by Dennis Bray, Yale University Press, 2009.
.) Даже простые бактериальные клетки обладают чем-то вроде нервной системы, состоящей из химических связей исключительной эффективности и элегантности. Однако как же все-таки могла бы эта комбинация из мембран и циклов реакций возникнуть в пребиотическом мире? «Не за миллион лет», – говорят некоторые. Справедливо, наверное, но что насчет сотни миллионов лет? Это должно было случиться всего один раз, чтобы разжечь огонек самовоспроизводства.
Вообразите, что мы вернулись в прошлое, в первые дни этого процесса, когда устойчивость начала постепенно превращаться в размножение, и мы видим распространение некоторых штук, там, где раньше их не было, и мы спрашиваем: «Почему мы видим эти невероятные вещи здесь?» Вопрос получается двусмысленный! В ответ у нас есть и рассказ, как это получилось, и объяснение зачем . Мы имеем дело с ситуацией, когда уже существуют некоторые химические структуры, которым просто нет альтернатив, некоторые соединения оказываются устойчивее и сохраняются лучше в существовавших тогда условиях, чем другие, похожие. До возникновения полноценного воспроизводства должны были появиться весьма устойчивые соединения, структуры, стабильные столь долгое время, чтобы его хватило для сохранения изменений. Это было не очень впечатляющее достижение, но именно то, что легло в основу дарвиновского процесса: нечто, что вроде как уже что-то может, но пока ничего такого особенного. В нашей реконструкции мы становимся свидетелями «автоматического» (алгоритмического) вытеснения нефункционального функциональным. А к тому времени, когда мы доберемся до бактерии, функциональность станет прямо-таки виртуозной. Другими словами, причины, почему части собраны и упорядочены именно таким образом, существуют. Мы можем подвергнуть процессу обратной реконструкции любую самовоспроизводящуюся сущность, определив ее сильные и слабые стороны и разъяснив, почему это именно так. Это и есть зарождение причин, и мне доставляет удовольствие отметить, что это пример того, что Гленн Адельсон [51] Гленн Адельсон (Glenn Adelson) – американский ученый, специалист по биоразнообразию, руководитель образовательных программ в области биологии и биоразнообразия.
называл «дарвинизмом о дарвинизме» (Godfrey-Smith, 2009): мы наблюдаем, как виды более сложных причин постепенно формируются путем отбора из более простых причин, « зачем » из « как », без каких-либо видимых скачков. Точно так же, как не существует Первого Млекопитающего – то есть млекопитающего, чьей мамой было бы не млекопитающее – нет и Первопричины, некоего свойства биосферы, которое могло бы встать у истоков чьего-либо «существования», сделав это успешнее, чем «конкуренция».
Естественный отбор, таким образом, служит автоматическим «искателем причин» – он их и «обнаруживает», и «одобряет», и «закрепляет» на протяжении многих поколений. Кавычки напоминают, что естественный отбор не имеет разума и не имеет никаких собственных причин, однако потрясающе компетентен в усовершенствовании результатов. Давайте посмотрим, понимаем ли мы, что на самом деле означают пугающие кавычки. Рассмотрим популяцию жуков во всем ее разнообразии. Некоторые из них поступают правильно (размножаясь), большинство – нет. Возьмем представителя меньшинства (типичного), который ведет себя правильно с репродуктивной точки зрения, и посмотрим, почему он это делает лучше, чем средний жук. Этот вопрос опять же двусмыслен: его можно интерпретировать и « как так получилось?» , и « зачем он это делает?» . Во многих случаях, даже в большинстве случаев ответ вообще не будет содержать причин ; это просто глупая случайность, счастливая или нет. В такой ситуации мы можем ответить только на вопрос « как? ». Однако если у нас есть подмножество, вполне возможно, очень небольшое, случаев, в которых можно ответить на вопрос « зачем? », есть отличие, которому удалось создать разницу , в этом случае мы видим зарождение причины, протопричины, если угодно. Изучение процесса объясняет, как так получилось, и показывает, почему эти жуки оказались удачливее других, почему они выиграли в конкурентной борьбе. «Позвольте выиграть лучшей сущности!» – таков слоган эволюционного процесса, и победители, будучи лучшими, носят на себе свидетельства своих достижений. В каждом поколении, в каждой линии только некоторым конкурентам удается размножиться, и каждый потомок в следующем поколении более удачлив или более одарен. Наша группа жуков прошла отбор (вы можете сказать почему, но лучше звучит – по причине ). Этот процесс объясняет накопление функций процессом слепого отбора причин, создающих сущности, которые обладают целями, но не подозревают об их существовании. Принцип необходимого знания [52] Принцип необходимого знания – принцип, включенный в концепции безопасности отраслей и государств. Он исходит из того, что человек должен иметь доступ только к той информации, которая ему совершенно необходима для выполнения своих должностных обязанностей. Предоставление излишних полномочий по умолчанию ведет к излишним проблемам и, вероятно, злоупотреблениям.
стал известен благодаря шпионским романам, однако царит и в биосфере: организму не обязательно знать причины, по которым полученные им в наследство дары приносят ему пользу, да и естественному отбору самому не нужно понимать, что он делает.
Интервал:
Закладка: