Михаил Лапиков - Освоение Солнечной: логистика будущего
- Название:Освоение Солнечной: логистика будущего
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2020
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Михаил Лапиков - Освоение Солнечной: логистика будущего краткое содержание
Освоение Солнечной: логистика будущего - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Главная уязвимость
Если речь зашла о сложных искусственных космических сооружениях, то стоит помнить, что главная их уязвимость – мусорное тепло. Раз уж на то пошло, в любой ситуации в космосе главная уязвимость чего угодно – мусорное тепло.
Работа бортовых систем порождает огромное количество тепла. Его можно только излучить. Радиаторы для этого нужны эффективные, а значит – очень большие и очень горячие. Заметить их очень легко.
Частные случаи обхода заметности в местных относительно малых системах есть, и у них можно подобрать граничные условия приемлемой эффективности. Но если говорить про искусственные сооружения и транспорт полной функциональности, их заметят все и всегда.
Наблюдаемость цивилизации
Шкала Кардашева появилась как таковая именно потому, что даже теми, ещё сравнительно простыми, средствами наблюдения единичный экуменополис и сопутствующую ему ближнюю космическую инфраструктуру получилось бы заметить на межзвёздных расстояниях уже с ранних стадий его полноценного строительства.
Это то, что нужно помнить о космосе всегда. Пресловутый «тёмный космический лес» настолько тёмен, что любая цивилизация в нём горит для наблюдателя ярче бочки с бензином в настоящей лесной роще тёмной ночью.
Но вернёмся к методам большой галактической астрономии.
Космическая интерферометрия
Простое короткое объяснение выглядит примерно следующим образом: волны отлично взаимодействуют друг с другом. При наложении двух одинаковых волн разной фазы они взаимно гасятся. Если же эти волны различаются, начинается самое интересное – разницу можно измерить, после чего более-менее точно опознать её причину.
Хорошо всем знакомое поле больших радиотелескопов занимается именно этим. Следит за некой областью пространства с полным совмещением волн. Если в области что-то есть, отклик придёт изменённым.
Разрешающая способность
Количество телескопов массива и расстояние между ними определяет разрешающую способность всей системы. Чем больше телескопов, и чем обширней поле, тем качественнее получается «картинка».
Правда, есть и специфика. У видимого света, который проходит даже через маленькую и простую линзу, длина волны гораздо скромнее размера линзы – на многие порядки. А вот радиодиапазоны уже требуют большой массив радиотелескопов. Именно потому, что длина волны запросто исчисляется в километрах.
Да, в космосе этих километров очень и очень много. Но и телескоп нужен очень большой!
Одна угловая секунда
Линза размером с ладонь для видимого света разрешение в одну угловую секунду вполне даёт. Именно потому, что на многие порядки больше короткой электромагнитной волны, которая и есть свет видимого диапазона.
Чтобы получить разрешение в одну угловую секунду для радиодиапазона, требуется использовать распределённый массив радиотелескопов, размером на те же порядки больше длины радиоволны. Если делать телескоп в сто миллионов раз больше длины волны, диапазон единичных десятков метров потребует миллионы километров на массив приемлемой разрешающей способности.
То есть, общий размер системы легко и свободно вылетит за пределы сферы Хилла Земли. Эффективная мощная система наблюдения для межзвёздных расстояний сама по себе – мегаконструкция!
Снижение цены
Разумеется, этот масштаб пугает лишь при малом представлении о его вероятных реалиях. Распределённая система отлично себя чувствует в режиме одиночного радиотелескопа на каждом заселённом камне Солнечной.
Их общую картинку сравнительно легко свести и синхронизировать, хотя только на передачу информации телескопами в центр уйдут многие часы. Подключение к гипотетической астрономической программе будущего новых местных радиотелескопов даст вполне эффективное улучшение общих возможностей системы. Заселение солнечной будет улучшать систему такого рода всё больше и больше. Средства наблюдения в районе орбит дальних планет и малых тел на «ближних дальних границах» Солнечной, на дальности в единичные световые дни сохранят достаточную эффективность системы и заметно увеличат её фактические возможности.
Что это даст человечеству?
Предел наблюдаемости
Сейчас мы эффективно обнаруживаем космические тела размером с планету на межзвёздных дистанциях. Холодная мёртвая планета заведомо лишена жизни, а также всяких признаков техногенной цивилизации. Но мы всё равно можем сказать, что она там есть, и даже примерно замерить её параметры, на основе чего достаточно точно сказать, чем она богата и каков её приблизительный состав.
Переход к большим астрономическим системам увеличит фактическое разрешение наблюдения ещё сильнее. Конечно, сигнал на межзвёздных расстояниях обладает межзвёздной же задержкой. Но в ближнем околосолнечном пространстве за этот промежуток времени ждать изменений бессмысленно.
Устаревание данных
Оценочный срок между окончательно сформированной разумной жизнью и возникновением современной нам цивилизации прыгает от десятков тысяч лет до сотен тысяч лет. Стадии перехода от забавной зверушки до почти высшего разумного перед этим оценочно занимают миллионы лет. Жизнь развивается из химического супа как таковая миллиарды лет.
То есть, информация о галактике, которую можно получить с помощью большого, на всю ту Солнечную, распределённого массива средств наблюдения любого типа условно безоговорочно актуальна. На момент получения она вряд ли устареет больше, чем на сотню тысяч лет. На многие тысячелетия освоения Солнечной и первых ближних звёздных систем задержка информации окажется и того меньше.
Сверхдальняя гравитометрия
Современная лазерно-интерферометрическая гравитационно-волновая обсерватория – две скромных постройки на единичные километры длины рабочих вакуумных туннелей на удалении в скромные единичные тысячи километров друг от друга. Такая конструкция уже обнаруживает масштабные взаимодействия звёздных объектов на удалении в миллиард световых лет.
Это всё ещё очень простая, очень ранняя и очень маленькая обсерватория. В космосе, где подобный массив запросто можно увеличить, а его составляющие вынести на удаление миллионы километров, точность системы резко возрастает. Что это даёт?
Идеальный дальномер
Точная разнесённая в пространстве астрономическая система на разных концах дальних орбит Солнечной – практически идеальный космический дальномер. Ему по силам определять точную дистанцию с ошибкой «тоньше человеческого волоса» на дальностях от нас до Проксимы Центавра.
Читать дальшеИнтервал:
Закладка: