Пол Стейнхардт - Невозможность второго рода. Невероятные поиски новой формы вещества

Тут можно читать онлайн Пол Стейнхардт - Невозможность второго рода. Невероятные поиски новой формы вещества - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, год 2022. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Пол Стейнхардт - Невозможность второго рода. Невероятные поиски новой формы вещества краткое содержание

Невозможность второго рода. Невероятные поиски новой формы вещества - описание и краткое содержание, автор Пол Стейнхардт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В этой книге увлекательно и доступно от первого лица рассказывается история потрясающего научного открытия. Физик-теоретик Пол Стейнхардт, профессор Принстонского университета, автор важных космологических теорий о ранней Вселенной, в чью честь Международная минералогическая ассоциация в 2014 году назвала новый минерал “стейнхардтитом”, описывает, как была найдена новая форма вещества – квазикристаллы, с конфигурацией атомов, запрещенной законами классической кристаллографии. Это захватывающая история о зарождении нового научного направления, о “невозможности”, которая оказалась возможной, о подлинной страсти и отчаянной храбрости в науке.
В формате PDF A4 сохранен издательский макет.

Невозможность второго рода. Невероятные поиски новой формы вещества - читать онлайн бесплатно ознакомительный отрывок

Невозможность второго рода. Невероятные поиски новой формы вещества - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Пол Стейнхардт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Эта лекция побудила его связаться с одним своим знакомым – богатым финансистом Жаком де Франсом де Крессе – и попросить у него разрешения исследовать его частную коллекцию минералов. Гаюи искренне наслаждался этим визитом, до тех пор пока в один роковой момент не уронил тот самый образец исландского шпата.

Финансист не только любезно принял извинения Гаюи за нанесенный ущерб, но также заметил, что все внимание гостя приковано к осколкам, и великодушно предложил ему забрать некоторые из них домой для дальнейшего изучения.

Вернувшись к себе, Гаюи взял небольшой фрагмент неправильной формы и принялся тщательно зачищать его поверхности, откалывая кусочек за кусочком, пока не получились совершенно гладкие плоские грани. Он заметил, что грани образуют небольшой ромбоэдр – фигуру, представляющую собой куб, наклоненный под углом к основанию.

Затем Гаюи взял другой кусочек исландского шпата неправильной формы и повторил те же самые операции. И вновь получился ромбоэдр. На этот раз он был немного больше по размеру, но имел такие же углы, что и у первого образца. Гаюи многократно повторил этот эксперимент со всеми фрагментами, которые ему достались. Позднее он проделал то же самое со многими другими образцами исландского шпата, найденными в различных регионах мира. Каждый раз он получал неизменный результат: ромбоэдр с одними и теми же углами между гранями.

Простейшее объяснение которое смог придумать Гаюи заключалось в том что - фото 1

Простейшее объяснение, которое смог придумать Гаюи, заключалось в том, что исландский шпат состоит из базовых структурных блоков, имеющих по неизвестной причине форму ромбоэдра.

Затем Гаюи расширил свои эксперименты, включив в них другие типы минералов. В каждом случае он обнаруживал, что минерал можно огранить и в итоге свести к строительным блокам строго определенной геометрической формы. Иногда это был такой же ромбоэдр, как в случае с исландским шпатом. Иногда – ромбоэдр с другими углами между гранями. Иногда получалась совсем иная форма. Гаюи поделился своими открытиями с французскими натуралистами и получил широкое признание научного сообщества, что позволило ему методично продолжать свои исследования минералов в течение следующих двух десятилетий, включая период Французской революции.

Наконец в 1801 году Гаюи опубликовал свой шедевр – “Трактат о минералогии”. Это был превосходно иллюстрированный атлас, вобравший в себя результаты всех его исследований и описывающий “законы кристаллических форм”, открытые им в процессе сбора данных.

Книга была просто потрясающей. Она принесла Гаюи научную должность, восхищение коллег и место в истории в качестве “отца современной кристаллографии”. Густав Эйфель посчитал научный вклад Гаюи настолько значительным, что включил его в список семидесяти двух французских ученых, инженеров и математиков, чьи имена выгравированы на первом этаже Эйфелевой башни.

Одним из важнейших результатов работы Гаюи стало понимание того, что минералы состоят из неких первичных строительных блоков, которые он называл la molécule intégrante [2] Интегральные молекулы ( фр. ). , раз за разом повторяющихся в веществе. Минералы одного типа состоят из одинаковых строительных блоков, независимо от того, где в мире они образовались.

Несколько лет спустя открытие Гаюи поспособствовало формулированию еще более смелой идеи. Британский ученый Джон Дальтон предположил, что вся материя, а не только минералы состоит из неделимых и неразрушимых единиц, называемых атомами. Согласно этой идее, первичные строительные блоки Гаюи соответствуют группам из одного или нескольких атомов, тип и пространственное расположение которых определяет тип минерала.

Авторами концепции атомов часто считают древнегреческих философов Левкиппа и Демокрита, живших в V веке до нашей эры. Однако их идеи были сугубо философскими. Именно Дальтон превратил атомистическую гипотезу в проверяемую научную теорию.

На основе своего опыта изучения газов Дальтон пришел к выводу о том, что атомы имеют сферическую форму. Он также предположил, что разные типы атомов имеют разные размеры. Атомы слишком малы, чтобы увидеть их при огранке минералов, как и с использованием любых других технологий, существовавших в XIX веке. Понадобилось более столетия ожесточенных дебатов, а также разработка новых технологий и нового типа экспериментов, чтобы атомистическая гипотеза была окончательно признана.

И все же одного из самых важных открытий Гаюи не могли объяснить ни он сам, ни Дальтон, несмотря на все их достижения. Независимо от изучаемого минерала первичные строительные блоки, la molécule intégrante , оказывались всегда либо тетраэдрами, либо треугольными призмами, либо параллелепипедами – более широкой категорией фигур, включающей в себя и ромбоэдр, обнаруженный Гаюи в самом начале. Чем объяснить подобную закономерность?

Поиски ответа на этот вопрос, продолжавшиеся много десятилетий, в конце концов привели к созданию новой важнейшей научной области, известной как кристаллография. Основанная на строгих математических принципах, кристаллография в итоге оказала огромное влияние на другие научные дисциплины, включая физику, химию, биологию и инженерию.

Законы кристаллографии оказались в силах объяснить все известные в то время формы вещества и предсказать множество их физических свойств, таких как твердость, поведение при нагревании и охлаждении, электропроводность и упругость. Успех кристаллографии в объяснении такого множества различных свойств вещества, относящихся к такому большому числу разных дисциплин, долгое время считался одним из величайших научных триумфов XIX века.

И все же в начале 1980-х годов именно эти знаменитые законы кристаллографии мы с моим студентом Довом Левином поставили под сомнение. Мы придумали, как сконструировать новые строительные блоки, которые можно складывать друг с другом таким способом, какой прежде считался невозможным. И именно наше открытие чего-то нового относительно того, что считалось хорошо известным фундаментальным научным принципом, и привлекло внимание Фейнмана во время моего доклада.

Чтобы дать возможность сполна оценить степень его удивления я приведу краткое - фото 2

Чтобы дать возможность сполна оценить степень его удивления, я приведу краткое описание трех простых принципов, на которых зиждется кристаллография.

Первый принцип состоит в том, что все чистые вещества, такие как минералы, образуют кристаллы, если у атомов и молекул достаточно времени, чтобы выстроиться упорядоченно.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Пол Стейнхардт читать все книги автора по порядку

Пол Стейнхардт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Невозможность второго рода. Невероятные поиски новой формы вещества отзывы


Отзывы читателей о книге Невозможность второго рода. Невероятные поиски новой формы вещества, автор: Пол Стейнхардт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x