Иван Тихонов - Сборник статей по организации водно-химического режима теплоэнергообъектов

Тут можно читать онлайн Иван Тихонов - Сборник статей по организации водно-химического режима теплоэнергообъектов - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Сборник статей по организации водно-химического режима теплоэнергообъектов
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    9785005638267
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Иван Тихонов - Сборник статей по организации водно-химического режима теплоэнергообъектов краткое содержание

Сборник статей по организации водно-химического режима теплоэнергообъектов - описание и краткое содержание, автор Иван Тихонов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Сборник включает в себя ряд статей на тему организации водно-химического режима паровых котельных установок. Информация не разбивает ВХР на отдельные части, а позволяет взглянуть на него в целом, как на комплекс взаимосвязанных физико-химических процессов, что помогает понять его на более качественном уровне.Благодаря простому языку заявленная тема доступна для усвоения даже тем, кто с ней не знаком или имеет поверхностное представление. Для опытных же читателей она станет полезным дополнением.

Сборник статей по организации водно-химического режима теплоэнергообъектов - читать онлайн бесплатно ознакомительный отрывок

Сборник статей по организации водно-химического режима теплоэнергообъектов - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Иван Тихонов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В результате можно записать следующие мероприятия для успешного ведения ВХР парового котла низкого давления.

1. Умягчение воды.

2. Максимальный возврат конденсата.

3. Деаэрирование и декарбонизация питательной воды.

4. Обратноосмотическое обессоливание.

5. Постоянный автоматический контроль значений рН и электропроводности котловой воды.

Рассмотрим каждый пункт подробнее.

1. Умягчение воды – это основной процесс водоподготовки, который должен быть реализован для парового котла низкого давления. Конечно, можно полностью обессолить воду, а затем дозировать в нее едкий натр. Но в условиях отсутствия надлежащего химического контроля – это равносильно «убийству» котла. Процесс умягчения воды для котлов низкого давления имеет еще одно очень большое преимущество, о котором будет рассказано в пятом пункте.

2. Возврат конденсата – это крайне важная составляющая успешного ВХР. В конденсат поступает много углекислоты от разложения бикарбонатов в котле. В результате в конденсатном тракте углекислота постепенно переходит в конденсат у уменьшает его рН. Как следствие начинает происходить коррозия конденсатного тракта и конденсат насыщается продуктами коррозии. Чем ниже температура конденсата, тем больше углекислоты в нем растворится и, соответственно, больше железа перейдет в конденсат. Железо будет вызывать повышенную мутность котловой воды со всеми вытекающими последствиями. Поэтому при проектировании системы возврата конденсата крайне важно избегать линий, где возможно застаивание и захолаживание конденсата. Конденсат необходимо возвращать в головку деаэратора. Преимущества этого в том, что, первое – смешиваясь с подпиточной водой, он ее нагревает и деаэрация проходит более эффективно, второе – в деаэраторной головке из конденсата отгоняется углекислота. Если конденсат возвращать непосредственно в деаэраторный бак, то углекислота вступит в реакцию с гидратом воды в деаэраторном баке. Значение рН питательной воды упадет, и потребуется больше пара на барботаж, чтобы обеспечить требуемый рН питательной воды после деаэратора.

3. Деаэрирование и декарбонизация питательной воды происходят в деаэраторе. При этом необходимо отметить разницу в процессах деаэрирования и декарбонизации. Деаэрирование эффективно происходит только в головке деаэратора. Т.е. для эффективного деаэрирования температура воды на последней (нижней) тарелке должна быть не менее 100 0С. Этого сложно достичь при отсутствии предварительного подогрева подпиточной (умягченной) воды. Поэтому если в головку поступает холодная умягченная вода, требуется большой расход пара для того, чтобы получить требуемое качество питательной воды по кислороду. Особенно в условиях переменной нагрузки, что свойственно для производственных котлов низкого давления, любой массообменный агрегат (в том числе и деаэратор) работает с очень низкой эффективностью.

Вроде бы очевидно, что необходимо организовывать предварительный подогрев умягченной воды перед деаэратором. Но то, что на бумаге выглядит как теплообменник с подводом пара и воды, на практике представляет из себя очень серьезную задачу.

Во-первых, умягченная вода является крайне коррозионной из-за смещения углекислотного баланса в сторону растворения. Поэтому при подогреве такой воды наблюдается то, что можно назвать взрывная коррозия. Поэтому допустимо использовать только нержавеющую сталь.

Во-вторых, организация работы теплообменника тоже требует очень серьезного подхода. Дело в том, что нагрев происходит паром. Подпитка деаэратора умягченной водой происходит непостоянно. Соответственно, когда расход воды через теплообменник прекращается, а регулятор пара не успевает его перекрыть, к примеру, пластинчатые теплообменники сразу разрушаются оттого, что застойная вода по водяной линии теплообменника сразу вскипает.

Все это требует очень серьезного подхода к решению, казалось бы, такой простой теплотехнической задачи.

В результате, как правило, для котлов низкого давления наблюдается значительное превышение кислорода в питательной воде. Но даже в этом случае коррозии подвержены прежде всего стальной экономайзер и питательный тракт парового котла. Попадая непосредственно в котел, кислород сразу уносится с паром. В случае, когда деаэрация отсутствует полностью, скорее всего, будет наблюдаться кислородная коррозия стального экономайзера, питательного тракта и, возможно, возвратных труб котла.

Декарбонизация питательной воды – это прежде всего удаление свободной углекислоты. Свободная углекислота довольно легко удаляется непосредственно из деаэраторного бака. Дело в том, что углекислота не может удалиться в так называемый ноль. При уменьшении ее концентрации в воде начинают появляться карбонаты и, соответственно, гидраты. Гидраты связывают свободную углекислоту в бикарбонат. В результате это позволяет избежать водородной (кислотной) коррозии питательного тракта и экономайзера котла. В любом случае в котле около 90% бикарбонатов перейдет в углекислоту, которая удалится с паром.

4. Обратноосмотическое обессоливание подпиточной воды не является обязательным требованием для работы паровых котлов низкого давления в случае большой доли возврата конденсата и (или) низкого солесодержания исходной воды. Тем не менее я крайне рекомендую использовать обратный осмос в совокупности с умягчением воды. В результате мы получаем глубокоумягченную воду с низким солесодержанием. В этом случае мы имеем небольшую продувку котла. Конденсат становится значительно менее агрессивным. Поэтому даже неграмотная организация системы возврата конденсата не является критичной. Отсутствие в воде органики не вызывает зашламление котла. Все это приводит к значительному повышению надежности работы всей котельной. В результате из-за отсутствия простоев котельной и, соответственно, всей технологической цепочки предприятие не несет убытки.

5. По котловой воде, как по крови человека, можно выяснить сразу почти все болезни. Если и не почти все, то хронические уж точно.

Основные отслеживаемые параметры котловой воды – это щелочность по фенолфталеину и метилоранжу и солесодержание. Анализ на щелочность требует наличие лаборанта и лаборатории. Измерение солесодержания котловой воды можно произвести обычным кондуктометром. По общей щелочности котловой воды и солесодержанию рассчитывают некую относительную щелочность котловой воды. Вероятно, здесь существует определенное недопонимание. Понятие относительной щелочности, т.е. отношение общей щелочности к солесодержанию пришло из ВХР котлов высокого давления. Для котлов высокого давления данный параметр важен тем, что питательная вода там полностью химически обессолена и в нее дозируется едкий натр для поднятия рН для избегания углекислотной коррозии. В результате если в воду дозируется больше едкого натра, чем требуется, это может привести к вскипанию и уносу котловой воды с паром, что критично для энергетических котлов. Для котлов низкого давления, где обессоливания воды не требуется, этот параметр абсолютно не информативен. Он вообще ни о чем не говорит и поэтому вреден, т.к. многие на него ориентируются.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Иван Тихонов читать все книги автора по порядку

Иван Тихонов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Сборник статей по организации водно-химического режима теплоэнергообъектов отзывы


Отзывы читателей о книге Сборник статей по организации водно-химического режима теплоэнергообъектов, автор: Иван Тихонов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x