Максим Филипповский - Генезис. Небо и Земля. Том 1. История
- Название:Генезис. Небо и Земля. Том 1. История
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:9785005620590
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Максим Филипповский - Генезис. Небо и Земля. Том 1. История краткое содержание
Генезис. Небо и Земля. Том 1. История - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
§142. Майкл Фарадей (1852) предположил, что поле – это область пространства, сплошь пронизанная силовыми линиями. [276] Силы взаимодействия токов, введённые Ампером, считались дальнодействующими. Фарадей не признавал существования в природе пустоты, даже заполненной эфиром. Мир полностью заполнен проницаемой материей, и влияние каждой материальной частицы близкодейственно, то есть распространяется на всё пространство, непрерывно передающиеся от каждой точки к соседним точкам с конечной скоростью 99. До Фарадея электрические силы понимались как взаимодействие зарядов на расстоянии – где нет зарядов, нет и сил. Фарадей изменил эту схему: заряд создаёт протяжённое электрическое поле, и уже с ним взаимодействует другой заряд, дальнодействия на расстоянии нет. С магнитным полем положение оказалось более сложным – оно не является центральным, и именно для определения направления магнитных сил в каждой точке Фарадей ввёл понятие силовых линий. Из полученных результатов Фарадей сделал вывод, «что сама обычная индукция во всех случаях является действием смежных частиц и что электрическое действие на расстоянии (то есть обыкновенное индуктивное действие) происходит только благодаря влиянию промежуточной материи».
§143. Джеймс Клерк Максвелл (1855) в своей статье «О фарадеевых силовых линиях» впервые записал в дифференциальной форме систему уравнений электродинамики, которая описывала все известные к тому времени экспериментальные данные, но не позволяла связать между собой заряды и токи и предсказать электромагнитные волны. [277] В работе «О физических силовых линиях», состоящей из четырёх частей, Максвелл (1861—1862) обобщил закон Ампера и ввел ток смещения, чтобы связать токи и заряды уравнением непрерывности, которое уже было известно для других физических величин, завершив формулировку полной системы уравнений электродинамики. [278] В статье «Динамическая теория электромагнитного поля» Максвелл (1864) на основании сформулированной ранее системы уравнений из 20 скалярных уравнений для 20 скалярных неизвестных, впервые сформулировал понятие электромагнитного поля как физической реальности, имеющей собственную энергию и конечное время распространения, определяющее запаздывающий характер электромагнитного взаимодействия. [279] В 1880 году Оливер Хевисайд, исследуя скин-эффект в телеграфных линиях передачи, переписал результаты Максвелла из их первоначальной формы в виде, выраженном в терминах современного векторного анализа, таким образом сведя систему из 20 уравнений с 12 переменными к 4 дифференциальным уравнениям, ныне известным как уравнения Максвелла. [280] Уравнения Максвелла описывают природу неподвижных и движущихся заряженных частиц и магнитных диполей, и отношения между ними, а именно электромагнитную индукцию 100.
§144. Предположение о наличии объекта между Марсом и Юпитером актуализировалось после открытия Уильямом Гершелем Урана в 1781 году, орбита которого почти полностью соответствовала правилу Тициуса-Боде. После открытия Джузеппе Пиацци (1801) Цереры, а затем Генрихом Ольберсом (1802) Паллады, Уильям Гершель (1802) предложил поместить их в отдельную категорию, названную «астероидами». После того, как к 1807 году дальнейшие исследования выявили два новых объекта в регионе – Юнону и Весту, Александр фон Гумбольдт (1851) заметил и регулярное появление падающих звезд, которые, вероятно, образуют часть Пояса астероидов, пересекающих орбиту Земли и движущихся с планетарной скоростью. [281] Роберт Джеймс Манн (1858) указал, что орбиты астероидов расположены в широком поясе пространства. [282]
§145. Под руководством Фридриха Аргеландера (50-60-е года XIX века) в Боннской обсерватории составлен звёздный каталог, ныне известный как Боннское обозрение (Bonner Durchmusterung, BD). [283] В каталог попало 325037 звёзд 101яркости до 9.5 звёздной величины (с точностью до 0,3 звездной величины), расположенных на склонениях от -2° до 90° с точностью до 0,1». Для составления каталога использовался трехдюймовый рефрактор Боннской обсерватории. Для картирования всю небесную сферу разделили на сферические пояса, параллельные небесному экватору, толщиной 1° по склонению. В 1886 году появилось так называемое Южное Боннское обозрение, выполненное помощником Аргеландера Эдуардом Шёнфельдом, использовавшим 6-дюймовый рефрактор Боннской обсерватории. [284] Это обозрение расширило каталог до -23° и добавило к нему 137834 звезды. Дальнейшее расширение каталога продолжалось за пределами Германии. Следующее обозрение было выпущено в 1908 году в Кордовской астрономической обсерватории, Аргентина. Кордобское обозрение, дополнившее Боннское обозрение до южного полюса и увеличившее число объектов каталога до 613959 звёзд. [285] К Боннскому обозрению также относят фотографический Кейпский (Капский, Кейптаунский) обзор 1896—1900 годов). [286] Фотографированием неба занимались в Кейптаунской обсерватории под руководством Дэйвида Гилла. Фотопластинки отправлялись на изучение Якобусу Каптейну в Гронинген. Каталог включал в себя 454875 звёзд Южного полушария, полный до 9,5-й звёздной величины и содержащий звезды до 12-й величины от склонения -19° до южного полюса мира. Полная версия каталога со всеми дополнениями содержит около 1,5 миллионов звёзд до 10 звёздной величины.
§146. После целого ряда физических открытий, накопленных к тому времени, которые мы возможно незаслуженно не рассмотрели, внимание Максвелла привлекла природа колец Сатурна, которые были открыты Галилео Галилеем в начале XVII века и долгое время оставались загадкой природы. Проанализировав математически различные варианты строения колец, Максвелл (1859) вывел, что подобная структура может быть устойчивой только в случае, если состоит из малых тел, не связанных между собой метеоритов, а устойчивость колец обеспечивается их притяжением к Сатурну и взаимным движением планеты и метеоритов. Исследовав распространение волн в таком кольце, Максвелл показал, что при определённых условиях метеориты не сталкиваются между собой, а для случая двух колец он определил, при каких соотношениях их радиусов наступает состояние неустойчивости. [287] Эти открытия легли в основу вышеуказанных исследований Максвелла по теории электромагнитного поля.
§147. В одной из формулировок закон излучения Густава Роберта Кирхгофа (1859) звучит: отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы и химической природы. [288] Закон Кирхгофа справедлив только для случаев теплового равновесия. Вместе с тем его часто применяют и для неравновесных систем, когда излучение не находится в равновесии с веществом, а предположение о термодинамическом равновесии между частицами излучающего вещества становится пригодным приближением. В качестве общеизвестного упоминается факт, что степень отклонения от закона Кирхгофа может служить мерой отличия излучения космических объектов от теплового. [289]
Читать дальшеИнтервал:
Закладка: