Юрий Почанин - Конструкции и монтаж фотоэлектрических модулей

Тут можно читать онлайн Юрий Почанин - Конструкции и монтаж фотоэлектрических модулей - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Юрий Почанин - Конструкции и монтаж фотоэлектрических модулей краткое содержание

Конструкции и монтаж фотоэлектрических модулей - описание и краткое содержание, автор Юрий Почанин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В книге описаны материалы трех поколений фотоэлементов и рассмотрены принципы работы фотоэлектрических преобразователей на их основе. Показана эффективность сбора солнечной энергии с помощью фотоэлементов. Описаны классы качества фотоэлектрических элементов, стандарты тестирования, методы и экология их производства. Подробно рассмотрены основные компоненты фотоэлектрических систем с их выбором: конструкции солнечных модулей, контроллеры заряда солнечных батарей, типы, применяемых аккумуляторов и инверторов. Представлены основные схемы построения фотоэлектрических систем. Вкратце рассмотрены типы солнечных электростанций. Большая глава посвящена монтажу фотоэлектрических установок. В конце работы описаны варианты применения фотоэлектрических систем. Книга рекомендуется для учащихся средних и студентов высших заведений.

Конструкции и монтаж фотоэлектрических модулей - читать онлайн бесплатно ознакомительный отрывок

Конструкции и монтаж фотоэлектрических модулей - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Юрий Почанин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Специфическая пространственная структура кристаллов перовскита дает им массу необычных свойств. Наиболее значимой зоной использования перовскитных материалов сейчас считается солнечная энергетика. Причины просты: КПД таких материалов к 2020 году взлетел до 25,2 %– и это для однослойных фотоэлементов. Лучшие серийные кремниевые солнечные батареи имеют КПД в те же 25%. Тут перовскиты догнали своего основного конкурента. Есть у перовскитов здесь и преимущество, недоступное обычным кремниевым панелям: слегка изменяя состав слоев такого материала, можно сдвинуть ширину его запрещенной зоны—такого значения энергии электрона, которой он в данном материале иметь не может. За счет этого такие слегка отличающиеся друг от друга перовскиты будут чувствительны к несколько разным длинам световых волн. Считается, что перовскитная пленка толщиной всего в 500 нанометров может содержать достаточно слоев, чтобы эффективно генерировать электричество сразу от всех участков видимого диапазона. Поэтому на их основе легко создать двух- и более многослойные материалы с КПД выше, чем у кремния.

Другая положительная особенность перовскитных фотоэлементов: их можно получить простым осаждением из раствора, примерно, как печатаемые буквы в струйном принтере. Это большой плюс на фоне кремниевых батарей, требующих сверхчистого кремния, вакуумных камер и очень непростого процесса его осаждения на подложку.

Наряду с такими очевидными достоинствами типичные перовскитные фотоэлементы имеют и серьезные недостатки. Самый популярный в перовскитной фотовольтаике тип соединений – йодид свинца-метиламмония с общей формулой CH 3NH 3PbX 3, где X, как правило, йод или бром/хлор. При контакте такого соединения с водой и кислородом, а также при периодическом нагреве, оно может быть химически нестабильным и быстро деградировать с разрушением своей структуры. Для ее стабильности опасен и остаточный слой йодида свинца, остающийся рядом с конечными кристаллами перовскита после окончания процесса его получения (цикла осаждения). Единственное, что в настоящий момент не позволяет запустить перовскитные панели, рис. 2.8, в промышленное производство–это сравнительно невысокие показатели устойчивости к перегреву и восприимчивости ультрафиолетового излучения материалов с так называемой перовскитной структурой, причем материалы эти были представлены в различных модификациях – от нанопленок до нанонитей.

Рис 28 Солнечная перовскитная панель В Калифорнийском университете в Дэвисе - фото 9

Рис. 2.8. Солнечная перовскитная панель

В Калифорнийском университете в Дэвисе под руководством профессора Д. Мандея проводятся работы по созданию нового типа солнечного элемента, который потенциально может работать круглосуточно. При благоприятном завершении работ будет создана интересная возможность сбалансировать энергосистему в течение цикла день-ночь. В настоящее время создана терморадиационная ячейка, которая генерирует электрический ток, поскольку излучает инфракрасный свет (тепло) в направлении холода ночного неба. Обычная солнечная панель генерирует энергию, поглощая солнечный свет, что и вызывает появление напряжения в устройстве. В новом устройстве свет будет не поглощаться, а излучаться, но при этом все равно будет происходить генерация энергии», поясняют авторы. Согласно подсчетам исследователей, солнечные «фермы» могут производить до 50 Вт электроэнергии на квадратный метр в идеальных условиях.

Учёные из Государственной лаборатории Айдахо близки к завершению работ над своей новой разработкой – сверхтонкой солнечной панелью, которая значительно ниже по себестоимости за счёт использования гибких материалов и сможет получать солнечную энергию после захода солнца. Технология включает в себя встроенные квадратные спирали из токопроводящего металла на пластмассовом листе. Эти спирали можно назвать «наноантеннами», так как их диаметр составляет всего 1/25 толщины человеческого волоса. Наноантенны могут получать энергию, как от солнечного света, так и от тепла, выделяемого землёй, поэтому они намного будут более эффективны и потенциально более широко применимы, чем традиционные солнечные элементы.

2.3. Каскадный солнечный элемент с гетеропереходами.

Вплоть до середины 80-х годов XX века преобразование солнечной энергии в электрическую в фотоэлементах как на основе арсенида галлия, так и кремния (AlGaAs – GaAs), осуществлялось при помощи простых технологий и простых структур. Затем была решена такая технологическая проблема, как создание широкозонных окон AlGaAs толщиной, которая может сравниться с толщиной наноразмерных активных зон в гетеролазерах, что и дало возможность создать каскадные солнечные элементы.

Структура каскадных солнечных элементов (КСЭ) с гетеререходами (гетеропереход – контакт двух различных полупроводников) предусматривает не менее двух элементов из полупроводниковых элементов разных типов, в которых специально подобраны значения ширины запрещенной зоны.

Двухкаскадные солнечные элементы различных типов были созданы в начале 80-х годов XX века. Каскадные солнечные элементы, применяемые в настоящее время в космических аппаратах, содержат третий каскад с германиевым p-n-переходом. В это же время начались исследования возможности создания четырех-, пяти-, а возможно и еще более многокаскадных структур, которые позволили бы реализовать высокие значения КПД в солнечных элементах. В таблице 2.1. представлены значения КПД каскадных СЭ. Стоит отметить, что столь высокие показатели КПД позволяют уменьшить стоимость получаемой солнечной энергии почти в 2 раза в сравнении с солнечными батареями на основе кристаллического кремния.

Таблица 2.1. Показатели КПД в % для переходов каскадных СЭ

Теоретическое значение КПД

Ожидаемое значение КПД

Реализованное значение КПД

1 p-n-переход

30

27

25,1

2 p-n-перехода

36

33

30,3

3 p-n-перехода

42

38

31,0

4 p-n-перехода

47

42

5 p-n-переходов

49

44

Весьма перспективны каскадные батареи на основе аморфного гидрогенизированного кремния ( a Si:H) и сплавов на его основе, (кремний-германий, SiGe), состоящие из трех элементов с различной шириной запрещенной зоны. Аморфный кремний содержит водород, который блокирует оборванные связи кремния, поэтому он является гидрогенизированной формой кремния. Гидрогенизированный аморфный кремний является прямозонным полупроводником с шириной запрещенной зоны 1,8 эВ и высоким коэффициентом оптического поглощения. Это означает, что пленка толщиной всего несколько микрон поглотит большую часть солнечного излучения. При легировании пленки аморфного кремния германием ширина запрещенной зоны уменьшается, а при добавлении углерода – увеличивается. Это позволяет создавать солнечные элементы с двумя или тремя гетеропереходами, перекрывающими практически весь солнечный спектр. Верхний слой, поглощающий коротковолновую область солнечного спектра, сформирован из сплава на основе a-Si:H с шириной оптической щели 1,8 эВ. Для серединного элемента в качестве слоя i-типа использован сплав a-SiGe:H с содержанием германия ~10–15%. Ширина оптической щели данного слоя (1,6 эВ) идеальна для поглощения зеленой области солнечного спектра. Нижняя часть СЭ поглощает длинноволновую часть спектра, для этого используется i-слой a-SiGe:H с концентрацией германия 40–50%. Непоглощенный свет отражается от заднего контакта на основе Ag/ZnO/ Все три элемента каскадной СБ связаны между собой сильнолегированными слоями, образующими туннельные переходы между соседними элементами. Слои, формирующие туннельные переходы, должны быть предельно тонкими (в нанометровом диапазоне) для минимизации поглощения света, в то время как фотоактивньге слои должны быть примерно на 2 порядка толще. Решающим же обстоятельством для экономически оправданного использования многопереходных фотоэлементов является тот факт, что они могут весьма эффективно работать при высоко конценгрированном солнечном облучении (вплоть до 2000-кратного). Это открывает широкие перспективы уменьшения стоимости и поверхности солнечных элементов и, как следствие, снижения стоимости солнечной электроэнергии.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Юрий Почанин читать все книги автора по порядку

Юрий Почанин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Конструкции и монтаж фотоэлектрических модулей отзывы


Отзывы читателей о книге Конструкции и монтаж фотоэлектрических модулей, автор: Юрий Почанин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x