Скотт Пейдж - Модельное мышление. Как анализировать сложные явления с помощью математических моделей
- Название:Модельное мышление. Как анализировать сложные явления с помощью математических моделей
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2020
- Город:Москва
- ISBN:978-5-00146-867-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Скотт Пейдж - Модельное мышление. Как анализировать сложные явления с помощью математических моделей краткое содержание
Автор объясняет, как с помощью 25 классов математических моделей анализировать данные и решать проблемы в повседневных ситуациях. Это хорошо бы знать каждому, кто должен ежедневно принимать решения, лавируя в потоке информации, – предпринимателям, менеджерам, аналитикам, социологам, ученым, студентам и не только.
Книга будет полезна всем, кто работает с большими массивами данных и принимает решения на их основе.
На русском языке публикуется впервые.
Модельное мышление. Как анализировать сложные явления с помощью математических моделей - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Правило «сначала крупные камни» , выведенное на основе экспертных наблюдений, может быть верным в большинстве случаев, но оно не безусловно. Подход, основанный на применении моделей, вывел бы оптимальное правило, исходя из конкретных предположений о задаче. В задаче об упаковке в контейнеры множество предметов разных размеров (или с разным весом) необходимо уложить в контейнеры определенного объема, использовав при этом как можно меньше контейнеров. Представьте, что вы упаковываете вещи из своей квартиры и складываете их в коробки размером примерно 60×60 сантиметров. Упорядочить вещи по размеру и положить каждую из них в первую коробку с достаточным объемом (метод, известный как алгоритм первого подходящего ) – весьма эффективный подход. И правило «сначала крупные камни» здесь вполне применимо. Однако предположим, что мы рассматриваем более сложную задачу: выделить место на Международной космической станции для исследовательских проектов. У каждого проекта есть вес полезного груза, размер и требования к системе электропитания наряду с требованиями ко времени и когнитивным способностям астронавтов. Кроме того, каждый исследовательский проект вносит определенный научный вклад. Даже если бы мы установили какой-либо показатель значимости как взвешенное среднее всех этих характеристик, правило «сначала крупные камни» не сработало бы, учитывая размерность взаимозависимостей. В данном случае гораздо лучше работали бы более сложные алгоритмы и, возможно, рыночные механизмы [25]. Таким образом, при одних условиях правило «сначала крупные камни» эффективно, тогда как при других нет. Применение моделей позволяет выяснить, когда целесообразно сначала складывать крупные камни, а когда нет.
Критики формального подхода заявляют, что модели просто переформатируют то, что нам уже известно, что они наливают старое вино в сверкающие математические бутылки, что нам не нужна модель для понимания того, что две головы лучше одной и что промедление смерти подобно. Мы можем осознать ценность самоотверженности, прочитав историю о том, как Одиссей привязал себя к мачте корабля. Такая критика не признает того факта, что выводы, сделанные с помощью моделей, принимают условную форму: если условие A выполняется, то наступает следствие B (например, если вы складываете что-то в контейнеры и размер – единственное ограничение, укладывайте сначала самые крупные предметы). Уроки, почерпнутые из литературы, или общеизвестные советы великих мыслителей во многих случаях не содержат никаких условий. Пытаясь жить или управлять другими людьми согласно безусловным правилам, мы потеряемся в море противоположных поговорок. Действительно ли две головы лучше одной? Или у семи нянек дитя без глазу?

Противоположных поговорок множество, а вот противоположных теорем не бывает. С помощью моделей мы делаем предположения и доказываем теоремы. Две теоремы, которые расходятся в отношении оптимальных действий, дают разные прогнозы или предлагают несовпадающие объяснения, скорее всего, исходят из разных предположений.
Модели дают четкое логическое объяснение эмпирических явлений. Экономические модели объясняют динамику цен и рыночной доли. Физические – скорость падающих предметов и форму траекторий. Биологические – распределение видов. Эпидемиологические – скорость и характер распространения заболеваний. Геофизические – распределение очагов землетрясений по размерам.
Модели способны объяснить выраженные в пунктах показатели и изменение их значений. В частности, модель может объяснить нынешнюю цену фьючерсов на свиную грудинку и причины роста цен на нее за последние шесть месяцев. Модель может также объяснить, почему президент назначает на должность судьи Верховного суда человека с умеренными взглядами и почему тот или иной кандидат склоняется в сторону левых или правых. Кроме того, модели объясняют форму: модели распространения идей, технологий и болезней дают S-образную кривую принятия (или распространения).
Модели, которые мы изучаем в рамках курса физики, такие как закон Бойля-Мариотта (модель, которая гласит, что произведение давления газа на его объем есть величина постоянная PV = k ), объясняют различные явления непостижимо хорошо [26]. Зная начальные объем и давление, мы можем вычислить постоянную k , а затем объяснить или спрогнозировать давление P как функцию V и k: P = k/V. Точность модели обусловлена тем фактом, что газы состоят из огромного количества простых частиц, которые следуют фиксированным правилам: любые две молекулы газа, помещенные в идентичную среду, подчиняются одним и тем же физическим законам. Таких молекул настолько много, что статистическое усреднение исключает любую случайность. Большинству социальных явлений не свойственна ни одна из этих характеристик: социальные агенты неоднородны, взаимодействуют в небольших группах и не подчиняются твердым правилам. К тому же люди умеют думать. Более того, они попадают под влияние социальной среды, а значит, вариации их поведения могут не быть взаимно скомпенсированы. По этой причине социальные явления гораздо менее предсказуемы, чем физические [27].
Наиболее эффективные модели объясняют как очевидные, так и неожиданные результаты. Классические модели рынков могут объяснить, почему непредвиденное повышение спроса на обычный товар, такой как обувь или картофельные чипсы, приводит к росту цен в краткосрочной перспективе – это интуитивно понятный результат. Эти же модели объясняют, почему увеличение спроса в долгосрочной перспективе меньше сказывается на ценах, чем предельные издержки производства товара. Увеличение спроса может даже привести к снижению цен вследствие повышения рентабельности за счет роста масштабов производства – более неожиданный результат. Те же модели могут объяснить парадоксы, например, почему алмазы, не представляющие большой практической ценности, настолько дороги, а вода, столь необходимая для выживания, такая дешевая.
Что касается утверждения, что модели могут объяснить все что угодно, то это правда, так и есть. Вместе с тем объяснение, полученное на основе модели, включает исходные предположения и четко обозначенные причинно-следственные связи, которые могут быть преобразованы в данные. Модель, гласящая, что высокий уровень преступного поведения можно объяснить низкой вероятностью разоблачения, поддается проверке.
Модели облегчают процесс разработки, обеспечивая концептуальные схемы, в рамках которых можно проанализировать последствия сделанного выбора. Инженеры используют модели для проектирования цепей поставок. Программисты – для разработки интернет-протоколов. Социологи – для создания институтов.
Читать дальшеИнтервал:
Закладка: