Марк Боуэн - Телескоп во льдах. Как на Южном полюсе рождалась новая астрономия
- Название:Телескоп во льдах. Как на Южном полюсе рождалась новая астрономия
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2018
- Город:Москва
- ISBN:978-5-17-110837-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Марк Боуэн - Телескоп во льдах. Как на Южном полюсе рождалась новая астрономия краткое содержание
Телескоп во льдах. Как на Южном полюсе рождалась новая астрономия - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Эти две головоломки не давали покоя Паули в течение пары лет, несмотря на боль, которую он испытывал после смерти матери, и на переживания из-за рухнувшего брака. Возможно, что отчасти понимание пришло к нему именно благодаря разводу – всего через восемь дней после этого события Паули написал остроумное «Открытое письмо группе радиоактивных участников конференции в Тюбингене», в котором предлагалось возможное решение для обеих задач 39.
Его приглашали приехать на эту конференцию в Тюбинген, однако Паули написал, что не сможет прибыть туда лично. Причиной, по его собственным словам, был «бал, намеченный в Цюрихе в ночь с 6 на 7 декабря». Письмо на конференцию доставил один из друзей Паули. Оно было адресовано в первую очередь двум экспериментаторам, которых Паули очень уважал, – Лизе Мейтнер и Хансу Гейгеру, изобретателю счетчика частиц, названного в его честь.
Письмо начиналось обращением к «дорогим радиоактивным леди и джентльменам», затем Паули сообщал:
Мне удалось… нащупать необычное средство для спасения статистического закона чередования [принцип запрета] и закона сохранения энергии. Возможно, что в ядре могут существовать частицы с нейтральным электрическим зарядом, которые я предлагаю называть нейтронами и которые обладают спином ½, следуют принципу запрета и отличаются от квантов света тем, что не движутся со скоростью света. Масса нейтронов должна быть сопоставима с массой электронов и в любом случае не должна составлять более 0,01 массы протона.
Таким образом, мы сможем найти объяснение наличия β-спектра при условии, что в процессе β-распада, помимо электрона, излучается и нейтрон, причем таким образом, что сумма энергий нейтрона и электрона сохраняет свою стабильность 40.
Чтобы избежать дальнейшей путаницы в терминах, сразу скажу, что частица, которую описывает Паули, в наши дни известна под названием «нейтрино». В сущности, частица Паули представляла собой довольно неуклюжую комбинацию нейтрино и другой частицы, известной нам как нейтрон (и поэтому находятся люди, считающие, что Паули открыл и то и другое 41). Однако, как бы то ни было, Паули сформулировал часть уравнения, связанную с нейтрино, почти безошибочно: энергия, исчезающая в процессе бета-распада , могла забираться доселе невиданной, легкой, электрически нейтральной частицей с полуцелым спином. Пятью годами позже итальянский физик Бруно Понтекорво заметил:
Сложно найти другой пример, в котором слово «интуиция» характеризует какое-либо человеческое достижение лучше, чем в случае с идеей нейтрино, предложенной Паули 42.
Паули предполагал, что энергия каким-то образом делится между его новой, невиданной частицей и кинетической энергией электрона. Часть энергии питала электрон, отлетавший от ядра, а оставшаяся направлялась в нейтрино. Общая величина энергии оставалась постоянной, однако ее доля, распределявшаяся по нейтрино, могла случайным образом меняться от одного распада к следующему. Это позволяло обеспечить сохранение энергии для каждого отдельного бета-распада и объяснить постоянно возникавший спектр энергии. Предположив, что электрически нейтральная частица со спином, равным полуцелому значению, может «существовать в ядре» – по одной для каждого электрона, – Паули мог решить загадку нечетного количества частиц в ядре и предложить решение для азотной аномалии.
Однако его предвидение выглядело не столь четким, когда речь заходила о составляющих ядра. Нейтрон, который, как мы знаем, «существует в ядре», имеет два таких же свойства, что и нейтрино, – электрическая нейтральность и полуцелое значение спина, – однако он весит почти столько же, как протон, и не излучается в ходе бета-распада. Для решения двух головоломок нужны были две частицы, несколько теоретических открытий и серия экспериментов, которые и были произведены в следующие несколько лет.
Паули был достаточно проницателен, чтобы понимать, что он блуждает в темноте:
Я допускаю, что мой прием может на первый взгляд показаться довольно невероятным, потому что, если бы нейтрон существовал, он давно был бы открыт. Тем не менее кто не рискует, тот не выигрывает. И тяжесть ситуации в отношении непрерывного β-спектра подтверждается высказыванием уважаемого предшественника на моей позиции, господина Дебая [Петера Дебая, получившего Нобелевскую премию по химии в 1936 году], который не так давно сказал мне в Брюсселе: об этом лучше вообще не думать, так же как о новых налогах. Поэтому мы должны серьезным образом обсуждать любой путь к спасению.
Итак, дорогие радиоактивные коллеги, прошу вас подвергнуть мою идею тестированию и обсуждению.
Под «радиоактивными коллегами» Паули имел в виду прежде всего Лизу Мейтнер и Гейгера. Они благосклонно (насколько это было в их силах) отнеслись к новой идее. С одной стороны, им не было известно ни одно экспериментальное свидетельство, которое противоречило бы идее Паули, однако с другой – они не знали и ни одного ее подтверждения. И такое положение вещей сохранялось еще в течение следующих 26 лет.
Ву Цзяньсюн, американский физик-экспериментатор китайского происхождения, с которой мы еще встретимся в этой книге, как-то заметила, что
будущие поколения, знающие о триумфальном успехе гипотезы о нейтрино, возможно, так никогда и не смогут в полной мере оценить те смелость и прозрение, которые потребовались [в 1930 году], чтобы выдвинуть столь странную идею, как существование неуловимой частицы 43.
Поразительно, что подобное странное и призрачное создание возникло в мыслях человека, находившегося в самом разгаре глубокого эмоционального кризиса. Несмотря на то что нейтрино была первой из выявленных учеными субатомных частиц, она до сих ставит множество вопросов перед физиками. Даже сейчас, спустя столетие после прозрения Паули, крошечные частицы продолжают указывать путь новой физике, располагающейся за пределами стандартной модели. В письме, написанном в 1958 году, за два месяца до смерти, он описывал нейтрино как
безумное дитя, порождение кризиса в моей жизни (1930–1931), которое и само вело себя безумным образом 44.
Всегда осторожный, создатель «нейтрона» Паули в течение следующей пары лет говорил о нем довольно неохотно: он боялся, что построил всего лишь некий воздушный замок. Британский астроном Фред Хойл однажды рассказал историю, услышанную им от астронома Вальтера Бааде, который познакомился с Паули в Гамбурге, а затем стал одним из его друзей на всю жизнь. Как-то вечером в 1930 или 1931 году (возможно, в тот самый день, когда Паули написал свое знаменитое письмо) Бааде зашел домой к Паули в Цюрихе, и тот заявил гостю: «Сегодня я совершил нечто ужасное, нечто, чего никогда не следует делать физику-теоретику: я выдвинул предложение, которое никогда не будет возможно проверить экспериментальным путем» 45. По словам Хойла, «Бааде тут же побился с приятелем об заклад на ящик шампанского – любимого напитка Паули – на то, что нейтрино рано или поздно все же будет обнаружено экспериментально».
Читать дальшеИнтервал:
Закладка: