Марк Боуэн - Телескоп во льдах. Как на Южном полюсе рождалась новая астрономия
- Название:Телескоп во льдах. Как на Южном полюсе рождалась новая астрономия
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2018
- Город:Москва
- ISBN:978-5-17-110837-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Марк Боуэн - Телескоп во льдах. Как на Южном полюсе рождалась новая астрономия краткое содержание
Телескоп во льдах. Как на Южном полюсе рождалась новая астрономия - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Проблема состояла в том, что у возникавших электронов имелся целый диапазон, или спектр энергий. Если бы все электроны покидали ядро с самым высоким уровнем энергии в диапазоне, то все было бы нормально, однако на практике такое, казалось, происходило крайне редко (более того, сейчас мы уже знаем, что этого не происходит в принципе). Казалось, что небольшая доля энергии каким-то образом исчезает.
Эта проблема оставалась нерешенной более 20 лет 30. Лиза Мейтнер, австрийский ученый-экспериментатор с хорошей теоретической подготовкой, и Отто Ган, знаменитый немецкий радиохимик, занялись изучением спектра бета-излучения в 1907 году. Они считали, что им вообще не удастся найти никакого спектра, и поначалу все шло именно так, как они ожидали, – и это было чрезвычайно странной ошибкой для столь профессиональной команды экспериментаторов. Вскоре они выявили некоторые недостатки своих методов, улучшили их и в 1911 году получили первые, изрядно смутившие их свидетельства того, что электроны действительно обладают определенным спектром. Мейтнер, единственный теоретик в команде, не была готова согласиться со своими собственными результатами. Она выдвинула целый ряд предположений относительно возможных проблем в технике нового эксперимента или вторичных процессов в ядре, которые могли бы как-то изменить изначально чистый поток. Однако большинство сомнений экспериментаторов рассеялось в 1914 году, когда Джеймс Чедвик, работавший под руководством великого Эрнеста Резерфорда в Кавендишской лаборатории в британском Кембридже, завершил то, что ныне считается первым четким экспериментом, доказавшим существование спектра 31.
Однако Лиза Мейтнер продолжала настаивать на своем. Последовали новые эксперименты, к которым присоединились другие ученые, в том числе еще один британец – Чарльз Драммонд Эллис. Битва над загадкой продолжалась еще 13 лет, до 1927 года, когда Эллис и его коллега Уильям Вустер смогли не только исключить влияние вторичных процессов, но и доказать, что какая-то энергия действительно пропадала, поскольку средняя скорость возникающих электронов была слишком низкой для того, чтобы обеспечить разницу в величине энергии массы между старым ядром (которое существовало до распада) и новыми ядром и электроном, возникшими после распада 32. Разумеется, одного эксперимента было недостаточно для того, чтобы убедить все научное сообщество, и в частности Лизу Мейтнер. Поэтому только после того, как через два года, в самом конце 1929 года, она вместе со своим ассистентом Вильгельмом Ортманном подтвердила и развила результаты Эллиса и Вустера, физическое сообщество было вынуждено признать тот факт, что в процессе бета-распада происходит что-то непонятное 33.
За предыдущие несколько десятилетий атом преподносил ученым так много сюрпризов, что архитекторы новой квантовой теории, в частности Нильс Бор, желали подвергнуть сомнению любые классические «истины». В рукописи, отправленной Паули в середине 1929 года, Бор предположил, что наличие недостающей энергии может служить свидетельством того, что священный закон сохранения не работает в квантовой реальности.
Это стало серьезным ударом по представлениям Паули, глубоко ощущавшего симметрию в мире физики (мало кто из простых смертных понимает, насколько сильно красота и элегантность способны мотивировать физика-теоретика и что принципы симметрии не просто красивы, а представляют собой один из самых мощных инструментов в его работе). Паули не мог понять, почему в ходе бета-распада электрический заряд должен сохраняться, а энергия – основа успешной специальной теории относительности Эйнштейна – нет 34. Паули ответил своему наставнику (Паули учился у Бора в его институте в Копенгагене) с типичной для себя откровенностью:
Должен сказать, что ваша работа меня совсем не удовлетворила… В реальности мы совершенно не представляем себе, в чем дело. Этого не знаете и вы… В любом случае дайте этому вопросу хорошенько отлежаться, и да будут сиять над нами мирные звезды! 35
Получив этот ответ, Бор так никогда и не опубликовал свою рукопись, Паули же последовал своему собственному совету и отложил вопрос в сторону. Со временем он начал подозревать, что проблема недостающей энергии может быть связана с другой, недавно возникшей головоломкой в имевшейся ядерной модели, а именно головоломкой спина. Спин чем-то напоминает вращение планеты, с тем исключением, что спин – это естественное свойство элементарных частиц наряду с их массой или электрическим зарядом. Частицы постоянно вращаются.
В 1924 году, предложив принцип запрета, Паули фактически предположил существование спина еще до его открытия. Старая квантовая модель атома, предложенная Бором, – подлинный шедевр того времени – говорила, что на каждом уровне энергии, или орбите, окружающей ядро атома, может быть не более двух электронов. Однако это было всего лишь предложением, не имевшим под собой никакой объективной основы. Паули же создал эту основу, которая стала новым законом физики. В своей простейшей форме принцип запрета утверждает, что никакие два электрона не могут пребывать в одном и том же квантовом состоянии. А поскольку на каждой орбите Бора имелось по два электрона, Паули пришел к выводу, что электрон должен обладать каким-то еще не открытым свойством. Однако, считая, что было бы непродуктивно использовать свой классически настроенный ум для визуализации происходящего в странном мире кванта, он отказался выдвигать какие-либо идеи о том, как может выглядеть это свойство. Паули назвал его «классически не описываемой двухзначностью» 36. Через год голландские физики Джордж Уленбек и Сэмюель Гаудсмит объяснили некоторые тонкости конкретного свойства эмиссионного спектра водорода, которое они и определили как спин 37.
Частицы ведут себя по-разному в зависимости от своего спина. И, как почти всегда в мире квантовой механики, это свойство проявляется на квантовом уровне. Частицы с полуцелым спином, такие как электрон, протон и нейтрон, следуют принципу запрета. А частицы с целым спином, такие как фотон или частица света, – нет. Им нравится быть вместе. Идея спина позволила создать новую интересную форму для атомной модели Бора, поскольку электрон, обладающий полуцелым спином, может иметь лишь два спиновых состояния: направленные вверх и вниз. Спин, направленный вверх, будет выстраивать пару со спином, направленным вниз, на каждой атомной орбите, и участники этой пары не будут подпускать на свою орбиту никого другого.
Однако эта конструкция начала распадаться уже в 1929 году, когда несколько экспериментов показали, что ядро азота имеет общий спин, равный 1, и, соответственно, не следует принципу запрета 38. Кроме того, возникало противоречие с принципами протонно-электронной модели ядра, согласно которым ядро азота должно содержать 14 протонов и 7 электронов – всего 21 частицу с полуцелым спином. Соответственно, не было и никакой возможности расставить нечетное количество спинов c полуцелым значением так, чтобы в итоге возникал спин с величиной, равной 1. К примеру, 10 спинов могли быть направлены вверх, а другие 10 – вниз, аннулируя, таким образом, влияние друг друга, однако последняя оставшаяся частица все равно создавала величину спина, равную половине целого значения.
Читать дальшеИнтервал:
Закладка: