Анри Пуанкаре - Теорема века. Мир с точки зрения математики
- Название:Теорема века. Мир с точки зрения математики
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2020
- Город:М.
- ISBN:978-5-907255-12-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Анри Пуанкаре - Теорема века. Мир с точки зрения математики краткое содержание
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!
Теорема века. Мир с точки зрения математики - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Изучив условия, в которых работает физик, я счел нужным показать его за работой. Для этого я взял несколько примеров из истории оптики и электричества. Мы увидим, откуда вышли идеи Френеля, Максвелла и какие гипотезы бессознательно создавали Ампер и другие основатели электродинамики.
Часть I. Число и величина
Глава I. О природе математического умозаключения
Самая возможность математического познания кажется неразрешимым противоречием. Если эта наука является дедуктивной только по внешности, то откуда у нее берется та совершенная строгость, которую никто не решается подвергать сомнению? Если, напротив, все предложения, которые она выдвигает, могут быть выведены один из других по правилам формальной логики, то каким образом математика не сводится к бесконечной тавтологии? Силлогизм не может нас научить ничему существенно новому, и если все должно вытекать из закона тождества, то все также должно к нему и приводиться. Но неужели возможно допустить, что изложение всех теорем, которые заполняют столько томов, есть не что иное, как замаскированный прием говорить, что А есть А!
Конечно, можно добраться до аксиом, которые лежат в источнике всех этих рассуждений. И если, с одной стороны, держаться того мнения, что их нельзя свести к закону противоречия, с другой – не желать видеть в них только факты опыта, которые не могли бы обладать характером математической необходимости, то имеется еще надежда отнести их к числу синтетических априорных суждений. Но это не значит разрешить затруднение; это значит только дать ему название: даже если бы природа синтетических суждений перестала быть для нас тайной, все же противоречие не было бы устранено, оно было бы только отодвинуто; силлогистическое умозаключение неспособно прибавить что-либо к тем данным, которые ему предоставляются; эти данные сводятся к нескольким аксиомам, и, кроме них, ничего нового нельзя было бы найти в заключениях.
Никакая теорема не должна была бы являться новой, если в ее доказательство не входила бы новая аксиома; умозаключение могло бы только возвращать нам истины, непосредственно очевидные, имеющие источником интуицию; оно являлось бы только промежуточным пустословием. Тогда, пожалуй, возник бы вопрос: не служит ли вообще силлогистический аппарат единственно для того, чтобы маскировать делаемые нами заимствования?
Противоречие поразит нас еще больше, если мы откроем какую-нибудь математическую книгу: на каждой странице автор будет выражать намерение обобщить уже известную теорему. Значит ли это, что математический метод ведет от частного к общему, и каким образом можно называть его тогда дедуктивным?
Наконец, если бы наука о числе была чисто аналитической или могла вытекать аналитически из небольшого числа синтетических суждений, то достаточно сильный ум мог бы, по-видимому, с первого взгляда заметить все содержащиеся в них истины; более того: можно было бы даже надеяться, что когда-нибудь для их выражения будет изобретен язык настолько простой, что эти истины будут непосредственно доступны и заурядному уму.
Если отказаться от допущения этих выводов, то необходимо придется признать, что математическое умозаключение само в себе заключает род творческой силы и что, следовательно, оно отличается от силлогизма.
И отличие это должно быть глубоким. Так, например, мы не найдем ключа к тайне в многократном применении того правила, по которому одна и та же операция, одинаково примененная к двум равным числам, дает тождественные результаты.
Все эти формы умозаключения – все равно, приводимы ли они к силлогизму в собственном смысле или нет, – сохраняют аналитический характер и поэтому являются бессильными.
Вопросы этого рода обсуждаются давно. Еще Лейбниц пытался доказать, что 2 да 2 составляют 4; рассмотрим вкратце его доказательство.
Я предполагаю, что определены число 1 и операция x + 1, состоящая в прибавлении 1 к данному числу x . Эти определения, каковы бы они ни были, не будут входить в последующие рассуждения.
Я определяю затем числа 2, 3 и 4 равенствами:
(1) 1 + 1 = 2; (2) 2 + 1 = 3; (3) 3 + 1 = 4.
Я определяю также операцию x + 2 соотношением
(4) x + 2 = ( x + 1) + 1.
Установив это, мы имеем
2 + 2 = (2 + 1) + 1 (определение (4)),
(2 + 1) + 1 = 3 + 1 (определение (2)),
3 + 1 = 4 (определение (3)),
откуда
2 + 2 = 4 (что и требовалось доказать).
Нельзя отрицать того, что это рассуждение является чисто аналитическим. Но спросите любого математика, и он вам скажет: «Это, собственно говоря, не доказательство, а проверка». Мы просто ограничились сближением двух чисто условных определений и констатировали их тождество; ничего нового мы не узнали. Проверка тем именно и отличается от истинного доказательства, что, будучи чисто аналитической, она остается бесплодной. Она бесплодна, потому что заключение есть только перевод предпосылок на другой язык. Истинное же доказательство, наоборот, плодотворно, ибо в нем заключение является в некотором смысле более общим, чем посылки.
Равенство 2 + 2 = 4 могло подлежать проверке только потому, что оно является частным случаем. Всякое частное выражение в математике всегда может быть таким образом проверено. Но если бы математика должна была сводиться к ряду таких проверок, то она не была бы наукой. Ведь шахматист, например, не создает еще науки тем, что он выигрывает партию. Всякая наука есть наука об общем.
Можно даже сказать, что точные науки имеют своей задачей избавить нас от необходимости таких прямых проверок.
Итак, посмотрим на математика за его делом и постараемся объяснить себе успешность его приемов. Задача эта не лишена трудностей; недостаточно открыть случайно попавшееся сочинение и проанализировать там какое-нибудь доказательство.
Мы должны прежде всего исключить геометрию, где вопрос усложняется трудными задачами, относящимися к роли постулатов, к природе и к происхождению понятия пространства. По аналогичным основаниям мы не можем обращаться и к анализу бесконечно малых. Нам надо искать математическую мысль там, где она осталась чистой, т. е. в арифметике.
Читать дальшеИнтервал:
Закладка: