Анри Пуанкаре - Теорема века. Мир с точки зрения математики

Тут можно читать онлайн Анри Пуанкаре - Теорема века. Мир с точки зрения математики - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Анри Пуанкаре - Теорема века. Мир с точки зрения математики краткое содержание

Теорема века. Мир с точки зрения математики - описание и краткое содержание, автор Анри Пуанкаре, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики - читать онлайн бесплатно ознакомительный отрывок

Теорема века. Мир с точки зрения математики - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Анри Пуанкаре
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Нет сомнения, что математическое рассуждение посредством рекурренции и индуктивное физическое рассуждение покоятся на различных основаниях; но ход их параллелен – они движутся в том же направлении, т. е. от частного к общему.

Рассмотрим это несколько ближе. Чтобы доказать равенство

а + 2 = 2 + а,

нам достаточно применить два раза правило

a + 1 = 1 + a (1)

и написать

a + 2 = a + 1 + 1 = 1 + a + 1 = 1 + 1 + a = 2 + a (2).

Однако равенство (2), выведенное таким образом чисто аналитически из равенства (1), не есть просто его частный случай: это нечто иное.

Поэтому нельзя сказать, что мы даже в действительно аналитической и дедуктивной части математических рассуждений двигались от общего к частному в обычном смысле слова.

Два члена равенства (2) суть просто сочетания, более сложные, чем два члена равенства (1), и анализ служит только для отделения элементов, которые входят в эти сочетания, и для изучения их соотношений.

Следовательно, математики действуют, применяя процесс «конструирования»; они «конструируют» сочетания все более и более сложные. Возвращаясь затем путем анализа этих сочетаний – этих, так сказать, совокупностей – к их первоначальным элементам, они раскрывают отношения этих элементов и выводят отсюда отношения самих совокупностей.

Это – процесс чисто аналитический, однако он направлен не от общего к частному, ибо совокупности, очевидно, не могут быть рассматриваемы как нечто более частное, чем их составные элементы.

Этому процессу «конструирования» справедливо приписывали большое значение и желали в нем видеть необходимое и достаточное условие прогресса точных наук.

Несомненно, что оно необходимо; но оно не является достаточным.

Для того чтобы конструирование могло быть полезным, чтобы оно не было бесплодным трудом для разума, чтобы оно могло служить опорой для дальнейшего поступательного движения, надо, чтобы оно прежде всего обладало некоторым родом единства, которое позволяло бы видеть в нем нечто иное, чем простое наращивание составных частей. Говоря точнее, надо, чтобы в анализе конструкции выявлялось некоторое преимущество сравнительно с анализом ее составных элементов.

В чем же может заключаться это преимущество?

Зачем, например, надо рассуждать не об элементарных треугольниках, а о многоугольнике, который ведь всегда разложим на треугольники?

Это делается потому, что существуют свойства, принадлежащие многоугольникам с каким угодно числом сторон, которые можно непосредственно применить к любому частному многоугольнику.

Весьма часто, напротив, только ценой продолжительных усилий можно бывает найти эти свойства, изучая непосредственно соотношения элементарных треугольников. Знание общей теоремы освобождает нас от этих усилий.

Если четырехугольник есть не что иное, чем соединенные рядом два треугольника, то это потому, что он принадлежит к роду многоугольников.

Конструирование становится интересным только тогда, когда его можно сравнить с другими аналогичными конструкциями, образующими виды того же родового понятия.

Необходимо еще, чтобы было возможно доказывать родовые свойства, не будучи вынужденным обосновывать их последовательно для каждого вида.

Чтобы достигнуть этого, необходимо вновь подняться от частного к общему, пройдя одну пли несколько ступеней.

Аналитический процесс «конструирования» не вынуждает нас опускаться ниже, а оставляет все на том же уровне.

Мы можем подняться выше только благодаря математической индукции, которая одна может научить нас чему-либо новому. Без помощи такой индукции, отличной в известных отношениях от индукции физической, но столь же плодотворной, как и последняя, процесс конструирования был бы бессилен создать науку.

Заметим, наконец, что эта индукция возможна только тогда, когда одна и та же операция может повторяться бесконечное число раз. Вот причина, почему теория шахматной игры никогда не может стать наукой; там различные ходы одной и той же партии не похожи друг на друга.

Глава II. Математическая величина и опыт

Если вы хотите знать, что понимают математики под непрерывностью, то ответа следует спрашивать не у геометра. Геометр всегда так или иначе старается представить себе фигуры, которые он изучает, но его представления являются для него только орудием; занимаясь геометрией, он употребляет пространство так же, как употребляет мел; поэтому следует остерегаться приписывать слишком большое значение случайностям, которые часто имеют не больше значения, чем белизна мела.

Чистому аналитику нечего бояться этой опасности. Он освободил математическую науку от всех посторонних элементов и может ответить на ваш вопрос: что представляет собой на самом деле та непрерывность, о которой рассуждают математики? Многие из них, умеющие размышлять о своей науке, уже сделали это, как, например, Таннери в своем «Введении в теорию функций одной переменной».

Будем исходить из последовательности целых чисел; между двумя соседними числами вставим одно или несколько промежуточных чисел, потом между этими числами вставим еще новые и так далее до бесконечности. Мы будем иметь, таким образом, неограниченное число членов: это будут числа, называемые дробно-рациональными или соизмеримыми. Но этого еще недостаточно; между этими членами, число которых, однако, уже бесконечно, надо вставить еще другие, так называемые иррациональные или несоизмеримые.

Прежде чем идти дальше, сделаем одно важное замечание. Непрерывность, понимаемая таким образом, есть не более чем собрание отдельных единиц, расположенных в известном порядке, правда, в бесконечном числе, но внешних друг другу. Это не соответствует обычной концепции, которая между элементами непрерывного предполагает некоторый род внутренней связи, составляющей из них целое, – где не точка предшествует существованию линии, а линия предшествует существованию точки. От знаменитой формулы: непрерывность есть единство во множественности – остается только множественность; единство исчезло. Это обстоятельство не лишает аналитиков основания определять свою непрерывность так, как они это делают, ибо, рассуждая именно об этом, они постоянно спорят друг с другом по поводу строгости. Но для нас достаточно указать, что настоящая математическая непрерывность есть нечто совсем иное, чем непрерывность физиков или непрерывность метафизиков.

Быть может, скажут, что математики, которые довольствуются этим определением, обмануты словами, что надо было бы точно сказать, что представляет собой каждый из промежуточных членов, выяснить, как надо их вставить, и показать, что эта операция возможна. Но это было бы несправедливо; единственным свойством этих членов, входящим в рассуждения о них [3] Сюда входят специальные соглашения, служащие для определения сложения; о них мы будем говорить ниже. , является свойство находиться прежде или после таких-то других членов; поэтому оно только и должно входить в их определение.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Анри Пуанкаре читать все книги автора по порядку

Анри Пуанкаре - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Теорема века. Мир с точки зрения математики отзывы


Отзывы читателей о книге Теорема века. Мир с точки зрения математики, автор: Анри Пуанкаре. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x