Анри Пуанкаре - Теорема века. Мир с точки зрения математики

Тут можно читать онлайн Анри Пуанкаре - Теорема века. Мир с точки зрения математики - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Анри Пуанкаре - Теорема века. Мир с точки зрения математики краткое содержание

Теорема века. Мир с точки зрения математики - описание и краткое содержание, автор Анри Пуанкаре, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики - читать онлайн бесплатно ознакомительный отрывок

Теорема века. Мир с точки зрения математики - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Анри Пуанкаре
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Все мы знаем, что опыты бывают хорошие и плохие. Накопление плохих опытов совершенно бесполезно; будь их сотни или тысячи – все равно, довольно появиться единственному труду настоящего мастера, каковым был, например, Пастер, чтобы все они потонули в забвении. Это хорошо понимал Бэкон, изобретший термин experimentum crucis [12] Решающий эксперимент ( лат .). . Но Карлейль этого не понял бы. Факт – всегда факт: студент сделал отсчет по своему термометру, не приняв никаких предосторожностей; пусть так – все же он сделал отсчет, и если во внимание принимаются одни только факты, то вот перед нами реальность такого же ранга, как странствования короля Иоанна Безземельного.

Почему же факт, который сообщил этот студент, не представляет интереса, между тем как факт, который умелый физик изложит в лекции, будет, напротив, очень важным? Это потому, что из первого сообщения мы не в состоянии сделать никакого вывода. Что же такое – хороший опыт? Это – опыт, который дает нам нечто большее по сравнению с единичным фактом; это – опыт, дающий нам возможность предвидеть, т. е. позволяющий делать обобщение.

В самом деле, без обобщения невозможно и предвидение. Условия произведенного опыта никогда не повторяются в точности. Наблюденный факт никогда не начнется сначала; единственное, что можно утверждать, – это что при аналогичных условиях произойдет аналогичное явление. Поэтому, чтобы предвидеть, надо по крайней мере опираться на аналогию, т. е. обобщать.

Как бы робок ни был исследователь, ему необходимо делать интерполяцию; опыт дает нам лишь некоторое число отдельных точек: их надобно соединить непрерывной линией, и это – настоящее обобщение. Этого мало: проводимую кривую строят так, что она проходит между наблюденными точками – близ них, но не через них. Таким образом, опыт не только обобщается, но и подвергается исправлению; а если бы физик захотел воздержаться от этих поправок и на самом деле удовольствоваться голым опытом, то ему пришлось бы высказывать очень странные законы.

Итак, голые факты не могут нас удовлетворить; иными словами, нам нужна наука упорядоченная, или, лучше сказать, организованная.

Нередко говорят, что следует экспериментировать без предвзятой идеи. Это невозможно; это не только сделало бы всякий опыт бесплодным, но это значило бы желать невозможного. Всякий носит в себе свое миропредставление, от которого не так-то легко освободиться. Например, мы пользуемся языком, а наш язык пропитан предвзятыми идеями и этого нельзя избежать; притом эти предвзятые идеи неосознанны, и поэтому они в тысячу раз опаснее других.

Можно ли сказать, что, допустив вторжение вполне осознанных нами предвзятых идей, мы этим усиливаем вред? Не думаю; по моему мнению, они скорее будут служить друг другу противовесом, так сказать, противоядием; они вообще будут плохо уживаться друг с другом; одни из них окажутся в противоречии с другими, и, таким образом, мы будем вынуждены рассматривать проблему с различных точек зрения. Этого достаточно для нашего высвобождения; кто может выбирать себе господина, тот уже больше не раб.

Итак, благодаря обобщению каждый наблюденный факт позволяет нам предвидеть множество других; однако не следует забывать, что из них только один первый достоверен, а все другие только вероятны. Как бы прочно обоснованным ни казалось нам наше предвидение, все же мы никогда не имеем абсолютной уверенности в том, что оно не будет опровергнуто опытом, предпринятым в целях его проверки. Однако вероятность часто бывает достаточно велика, чтобы практически мы могли ею удовлетвориться. Лучше предвидеть без абсолютной уверенности, чем не предвидеть вовсе.

Из предыдущего ясно, что не следует упускать ни одного случая выполнить проверочные опыты. Но всякое экспериментальное исследование продолжительно и сопряжено с трудностями; работников мало; число же фактов, которые нам нужно предвидеть, неизмеримо; в сравнении с количеством их число возможных для нас проверок всегда будет величиной ничтожно малой.

Из того немногого, что может быть нами достигнуто непосредственно, нужно извлечь возможно большую пользу; нужно, чтобы каждый опыт позволял нам возможно больше увеличить как численность, так и вероятность предвидимых нами фактов. Задача состоит в том, чтобы повысить производительность научного познания.

Я позволю себе сравнить науку с библиотекой, которая должна беспрерывно расширяться; но библиотекарь располагает для своих приобретений лишь ограниченными кредитами; он должен стараться не тратить их понапрасну. Такая обязанность делать приобретения лежит на экспериментальной физике, которая одна лишь в состоянии обогащать библиотеку. Что касается математической физики, то ее задача состоит в составлении каталога. Если каталог составлен хорошо, то библиотека не делается от этого богаче, но читателю облегчается пользование ее сокровищами. С другой стороны, каталог, указывая библиотекарю на пробелы в его собраниях, позволяет ему дать его кредитам рациональное употребление; а это тем более важно ввиду их совершенной недостаточности.

Итак, вот в чем значение математической физики. Она должна руководить обобщением, руководить так, чтобы от этого увеличивалась производительность науки. Нам остается рассмотреть, какими путями она этого достигает и как может она это выполнить без опасных уклонений с правильного пути.

Единство природы. Заметим прежде всего, что всякое обобщение до известной степени предполагает веру в единство и простоту природы. Допущение единства не представляет затруднений. Если бы различные части Вселенной не относились между собой как органы одного и того же тела, они не обнаруживали бы взаимодействий – они, так сказать, взаимно игнорировали бы друг друга, и мы, в частности, знали бы только одну из них. Поэтому мы должны задавать вопрос не о том, едина ли природа, а о том, каким образом она едина.

Относительно второго положения дело обстоит сложнее, нельзя быть уверенным, что природа проста. Можем ли мы без опасения считать это допущение справедливым?

Было время, когда простота закона Мариотта служила аргументом в пользу его точности. Сам Френель, сказавший однажды в беседе с Лапласом, что природа не беспокоится об аналитических трудностях, считал себя обязанным дать по этому поводу объяснения, чтобы не встать в слишком резкое противоречие с господствовавшим тогда мнением.

С тех пор взгляды сильно изменились; однако те, которые не верят, что законы природы должны быть просты, все же часто бывают вынуждены поступать так, как если бы они разделяли эту веру. Они не могли бы совершенно отрешиться от этой необходимости, не разрушая тем самым всякой возможности обобщения, а следовательно, и науки.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Анри Пуанкаре читать все книги автора по порядку

Анри Пуанкаре - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Теорема века. Мир с точки зрения математики отзывы


Отзывы читателей о книге Теорема века. Мир с точки зрения математики, автор: Анри Пуанкаре. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x