Анри Пуанкаре - Теорема века. Мир с точки зрения математики

Тут можно читать онлайн Анри Пуанкаре - Теорема века. Мир с точки зрения математики - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Анри Пуанкаре - Теорема века. Мир с точки зрения математики краткое содержание

Теорема века. Мир с точки зрения математики - описание и краткое содержание, автор Анри Пуанкаре, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики - читать онлайн бесплатно ознакомительный отрывок

Теорема века. Мир с точки зрения математики - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Анри Пуанкаре
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Другой пример. Я сгибаю стержень; он принимает весьма сложную форму, прямое изучение которой было бы невозможно; я смогу приступить к ее исследованию, если замечу, что сгибание стержня является результатом деформации весьма малых элементов стержня и что деформация каждого из них зависит исключительно от сил, непосредственно к нему приложенных, а не от сил, действующих на другие элементы.

В этих примерах, которые можно было бы множить без труда, заключено допущение, что не существует действия на расстоянии (по крайней мере на значительном расстоянии). Это – гипотеза; она не всегда является верной – примером служит закон тяготения; поэтому ее надлежит подвергнуть проверке; если она подтверждается хотя бы приближенно, то она ценна, потому что она позволит нам обосновать математическую физику по крайней мере путем последовательных приближений.

Если такая гипотеза не выдерживает проверки, следует искать что-либо аналогичное, ибо есть и другие средства дойти до элементарных явлений. Если несколько тел действуют вместе, то возможно, что их действия независимы и просто складываются друг с другом либо как векторы, либо как скалярные величины. В таком случае элементарным явлением будет действие отдельного тела. В иных случаях задачу сводят к малым движениям, или – более общо – к малым вариациям, которые подчинены известному закону суперпозиции. Наблюденное движение разложится тогда на простые движения, например звук – на гармонические тоны, белый свет – на монохроматические составляющие.

Какими же средствами можно уловить элементарное явление, после того как выяснилось, с какой стороны следует его искать?

Прежде всего, часто случается, что, для того чтобы его угадать или – лучше – чтобы угадать то, что есть в нем полезного для нас, вовсе нет необходимости проникать в самый механизм его; достаточно будет применить закон больших чисел. Обратимся опять к примеру распространения теплоты: каждая частица излучает по направлению к каждой соседней частице, но по какому закону – этого нам нет необходимости знать; всякое предположение относительно этого было бы гипотезой безразличной, а следовательно, бесполезной и не поддающейся проверке. В самом деле, благодаря свойствам средних величин и вследствие симметричности среды все различия сглаживаются и результат оказывается всегда одним и тем же, какая бы гипотеза ни была предложена.

Подобное имеет место в теории упругости и в теории капиллярных явлений: близкие друг к другу молекулы притягиваются и отталкиваются, но нам нет нужды знать, по какому закону. Достаточно того, что это притяжение действует только на малых расстояниях, что число частиц весьма велико, что среда симметрична, а далее остается лишь пустить в ход закон больших чисел.

В приведенных примерах простота элементарного явления таилась под сложностью непосредственно наблюдаемого результата; но эта простота в свою очередь является призрачной и скрывает за собою весьма сложный механизм.

Лучшим средством дойти до элементарного явления был бы, очевидно, опыт. С помощью искусных экспериментальных приемов нужно было бы разъединить ту сложную связанность, какую природа предоставляет нашему исследованию, а затем тщательно изучать найденные и доведенные до возможной степени чистоты составные элементы. Примером может служить разложение естественного белого луча призмой на монохроматические лучи и поляризатором – на поляризованные лучи.

К несчастью, это не всегда возможно и достаточно. Иногда необходимо, чтобы умозрение предшествовало опыту. Я ограничусь одним примером, который всегда поражал меня: разлагая белый свет, я могу выделить узкую полосу спектра, но, как бы мала она ни была, она будет иметь известную ширину. Точно так же естественные монохроматические источники света дают нам линию тонкую, но не до бесконечности. Кто-нибудь мог бы предположить, что, подвергая экспериментальному изучению эти естественные источники, употребляя все более и более тонкие спектральные линии и в конце концов переходя, так сказать, к пределу, удалось бы достигнуть знания свойств строго монохроматического света. Но это было бы неточно. Пусть мы имеем два луча, испускаемые одним и тем же источником; пусть мы сначала поляризуем их во взаимно перпендикулярных плоскостях, затем приведем к одной плоскости поляризации и, наконец, заставим интерферировать. Интерференция произошла бы, если бы свет был строго монохроматичен; но при наших лишь приближенно монохроматических источниках интерференция не произойдет, как бы узка ни была взятая спектральная линия; чтобы явление имело место, она должна была бы быть во много миллионов раз уже, чем самые тонкие известные нам линии.

Таким образом, в этом случае переход к пределу обманул бы нас; здесь теоретическая мысль должна была идти впереди опыта, и если она успела в этом, то лишь потому, что инстинктивно руководилась соображением простоты.

Знание элементарного факта позволяет нам сформулировать задачу в виде уравнения; отсюда путем некоторых комбинаций остается только вывести заключение о сложном факте, подлежащем наблюдению и проверке. Это – не что иное, как интегрирование, которое уже составляет дело математика.

Можно задать вопрос: почему в физических науках обобщение так охотно принимает математическую форму? Причина этого теперь понятна: она состоит не только в том, что приходится выражать числовые законы, но и в том, что наблюдаемое явление есть результат суперпозиции большого числа элементарных явлений, подобных друг другу: значит, здесь вполне естественно появиться дифференциальным уравнениям.

Однако недостаточно, чтобы каждое элементарное явление подчинялось простым законам; все подлежащие сочетанию явления должны подчиняться одному и тому же закону. Только в этом случае математика может принести пользу, потому что она научит нас сочетать подобное с подобным. Цель ее – предсказывать результат сочетания, не проделывая его шаг за шагом на самом деле. Когда приходится повторять несколько раз одну и ту же операцию, математика позволяет нам избежать этого повторения и путем особого рода индукций заранее узнать нужный результат. Я изложил этот прием выше, в главе о математическом умозаключении. Однако для этого необходимо, чтобы все эти операции были подобны друг другу; в противном случае, очевидно, пришлось бы на деле выполнить их одну за другой и помощь математики оказалась бы ненужной.

Таким образом, возможность рождения математической физики обусловлена приблизительной однородностью изучаемого предмета. Это условие не выполняется в биологических науках: здесь мы не находим ни однородности, ни относительной независимости разнородных частей, ни простоты элементарного явления. Вот почему биологи вынуждены прибегать к иным приемам обобщения.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Анри Пуанкаре читать все книги автора по порядку

Анри Пуанкаре - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Теорема века. Мир с точки зрения математики отзывы


Отзывы читателей о книге Теорема века. Мир с точки зрения математики, автор: Анри Пуанкаре. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x